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Abstract 

In education research and in many other fields, researchers are often interested in testing the 
effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points 
in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis 
tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical 
procedures that counteract this problem by adjusting p-values for effect estimates upward. 
While MTPs are increasingly used in impact evaluations in education and other areas, an 
important consequence of their use is a change in statistical power that can be substantial. 
Unfortunately, researchers frequently ignore the power implications of MTPs when designing 
studies. Consequently, in some cases, sample sizes may be too small, and studies may be 
underpowered to detect effects as small as a desired size. In other cases, sample sizes may be 
larger than needed, or studies may be powered to detect smaller effects than anticipated.  

Researchers typically worry that moving from one to multiple hypothesis tests and thus 
employing MTPs results in a loss of power. However, that need not always be the case. Power 
is indeed lost if one focuses on individual power: the probability of detecting an effect of a 
particular size or larger for each particular hypothesis test, given that the effect truly exists. 
However, in studies with multiplicity, alternative definitions of power exist that in some cases 
may be more appropriate. For example, when testing for effects on multiple outcomes, one 
might consider 1-minimal power: the probability of detecting effects of at least a particular size 
on at least one outcome. Similarly, one might consider ½-minimal power: the probability of 
detecting effects of at least a particular size on at least ½ of the outcomes. Also, one might 
consider complete power: the power to detect effects of at least a particular size on all out-
comes. The choice of definition of power depends on the objectives of the study and on how the 
success of the intervention is defined. The choice of definition also affects the overall extent of 
power. 

This paper presents methods for estimating statistical power, for multiple definitions of 
statistical power, when applying any of five common MTPs — Bonferroni, Holm, single-step 
and step-down versions of Westfall-Young, and Benjamini-Hochberg. The paper also presents 
empirical findings on how power is affected by the use of MTPs. To contain its scope, the paper 
focuses on multiplicity that results from estimating effects on multiple outcomes. The paper also 
focuses on the simplest research design and analysis plan that education studies typically use in 
practice: a multisite, randomized controlled trial (RCT) with the blocked randomization of 
individuals, in which effects are estimated using a model with block-specific intercepts and with 
the assumption of constant effects across blocks. However, the power estimation methods 
presented can easily be extended to other modeling assumptions and other study designs. 
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1. Introduction 
In education research and in many other fields, researchers are often interested in testing the 
effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points 
in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis 
tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical 
procedures that counteract this problem by adjusting p-values for effect estimates upward. 
When not using an MTP, the probability of false positive findings increases, sometimes dramat-
ically, with the number of tests. When using an MTP, this probability is reduced. 

MTPs are increasingly used in impact evaluations in education. For example, the Insti-
tute for Education Sciences (IES), the primary research arm of the U.S. Department of Educa-
tion, published a technical methods report on multiple testing that recommends MTPs as one of 
several strategies for dealing with the multiplicity problem (Schochet, 2008). In addition, IES’s 
What Works Clearinghouse, which reviews and summarizes thousands of education studies, 
applies a particular MTP, the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) to 
studies’ statistically significant findings when effects are estimated for multiple measures or 
groups (U.S. Department of Education, 2014). 

However, an important consequence of MTPs is a change in statistical power that can 
be substantial. That is, the use of MTPs changes the probability of detecting effects when they 
truly exist, compared with the situation when the multiplicity problem is ignored. Unfortunate-
ly, while researchers are increasingly using MTPs, they frequently ignore the power implica-
tions of their use when designing studies. Consequently, in some cases sample sizes may be too 
small, and studies may be underpowered to detect effects as small as a desired size. In other 
cases, sample sizes may be larger than needed, or studies may be powered to detect smaller 
effects than anticipated. 

Researchers typically worry that moving from one to multiple hypothesis tests and thus 
employing MTPs results in a loss of power. However, that need not always be the case. Power 
is indeed lost if one focuses on individual power — the probability of detecting an effect of a 
particular size or larger for each particular hypothesis test, given that the effect truly exists. 
However, in studies with multiplicity, alternative definitions of power exist and in some cases 
may be more appropriate (e.g., see Westfall, Tobias, & Wolfinger, 2011; Dudoit, Shaffer, & 
Bodrick, 2003; Chen, Luo, Liu, & Mehrotra, 2011; and Senn & Bretz, 2007). For example, 
when testing for effects on multiple outcomes, one might consider 1-minimal power: the 
probability of detecting effects of at least a particular size (which can vary by outcome) on at 
least one outcome. Similarly, one might consider ½-minimal power: the probability of detecting 
effects of at least a particular size on at least ½ of the outcomes. Also, one might consider 
complete power: the power to detect effects of at least a particular size on all outcomes. The 
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choice of definition of power depends on the objectives of the study and on how the success of 
the intervention is defined. The choice of definition also affects the overall extent of power. 

This paper fills an important gap in the existing literature on designing impact studies in 
education and social policy. The literature and tools on statistical power are extensive but do not 
take multiplicity into account (e.g., Dong & Maynard, 2013; Spybrook et al., 2011; Raudenbush 
et al., 2011; Hedges & Rhoads, 2010). Also, the literature on the multiple testing problem in 
these fields does not provide clear guidance for estimating power, nor does it explore power 
under alternative definitions (which do exist in literature in medicine and genomics). 

This paper presents methods for estimating statistical power, for multiple definitions 
of statistical power, when applying any of five common MTPs — Bonferroni, Holm, single-
step and step-down versions of Westfall-Young, and Benjamini-Hochberg. It also provides R 
code so that researchers can implement the power estimation methods in their studies. The 
paper also presents empirical findings on how power is affected by the use of MTPs. The 
extent to which studies are underpowered or overpowered varies with circumstances particu-
lar to those studies, including: the definition of power, the number of tests, the proportion of 
tests that are truly null, the correlation between tests, the 𝑅𝑅2′s of baseline covariates, and the 
particular MTP used to adjust p-values. The paper explores all of these factors and discusses 
the implications for practice. 

To contain the scope of the paper, it focuses on multiplicity that results from estimating 
effects on multiple outcomes.1 The paper also focuses on the simplest research design and 
analysis plan that education studies typically use in practice: a multisite, randomized controlled 
trial (RCT) with the blocked randomization of individuals, in which effects are estimated using 
a model with block-specific intercepts and with the assumption of constant effects across 
blocks. However, as will be discussed at the end of the paper, the power estimation methods 
presented can easily be extended to other modeling assumptions and other study designs. 

The remainder of the paper proceeds as follows: Section 2 provides an overview of 
multiple testing. It provides some intuition of the multiple testing problem, summarizes how 
MTPs address the multiple testing problem, and discusses features of the MTPs in this paper 
that affect power. Section 3 then gives a brief overview of a methodological approach for 

                                                      
1We note that there are different guidelines for when to adjust for multiple outcomes in education studies. 

For example, Schochet (2008) recommends organizing primary outcomes into domains, conducting tests on 
composite domain outcomes, and applying multiplicity corrections to composites across domains. The What 
Works Clearinghouse applies multiplicity corrections to findings within the same domain rather than across 
different domains. This paper would apply to either case. In this paper, the word “outcome” refers to either a 
single outcome or an outcome domain, and the paper focuses on any situation in which an analyst would apply 
adjustments to account for multiple outcomes. 
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estimating power and provides an example of how researchers can carry out power estimation 
under multiplicity. Section 4 presents empirical findings for a variety of realistic scenarios. 
Finally, Section 5 provides a summary of the empirical findings and recommendations for 
practice and next steps. A detailed description of the MTPs in this paper can be found in 
Appendix A. R code implementing the power estimation methodology can be found in Appen-
dix B. Also, power comparisons with other sources that validate the accuracy of the power 
estimation methodology can be found in Appendix C. 

2. Overview of Multiple Testing 

2.1 The Multiple Testing Problem 

This paper focuses on the frequentist framework of hypothesis testing, as it is currently 
the prevailing framework in education and social policy research. Under this framework, the 
treatment and control groups in an RCT are considered random samples from a defined popula-
tion (assumed to be the same across all blocks under the assumed design). Following the Rubin-
Neyman counterfactual framework (Neyman, 1923; Rubin, 1974, 2006), 𝑌𝑌0𝑖𝑖(𝑚𝑚) is the 𝑚𝑚𝑡𝑡ℎof 
𝑀𝑀 outcomes for individual 𝑖𝑖 when not exposed to the treatment, and 𝑌𝑌1𝑖𝑖(𝑚𝑚) is the 𝑚𝑚𝑡𝑡ℎof 𝑀𝑀 
outcomes for individual 𝑖𝑖 when exposed to treatment. Then the population average treatment on 
the 𝑚𝑚𝑡𝑡ℎ outcome, given by 

 𝜓𝜓(𝑚𝑚) = 𝐸𝐸(𝑌𝑌1𝑖𝑖(𝑚𝑚)) − 𝐸𝐸(𝑌𝑌0𝑖𝑖(𝑚𝑚)), (1) 

is considered to be fixed. Researchers often express the average treatment effect in standard 
deviation units — as an effect size. The effect size parameter for the 𝑚𝑚𝑡𝑡ℎ outcome is given by 

 𝐸𝐸𝐸𝐸(𝑚𝑚) =
𝜓𝜓(𝑚𝑚)
𝜎𝜎(𝑚𝑚), (2) 

where 𝜎𝜎(𝑚𝑚) is the standard deviation of the 𝑚𝑚𝑡𝑡ℎ outcome.2 

In the frequentist framework, one typically tests a null hypothesis of no effect, 
𝐻𝐻0(𝑚𝑚): 𝐸𝐸𝐸𝐸(𝑚𝑚) = 0, against an alternative hypothesis of 𝐻𝐻1(𝑚𝑚):𝐸𝐸𝐸𝐸(𝑚𝑚) ≠ 0 for a two-sided 
test or 𝐻𝐻1(𝑚𝑚):𝐸𝐸𝐸𝐸(𝑚𝑚) > 0 or 𝐻𝐻1(𝑚𝑚): 𝐸𝐸𝐸𝐸(𝑚𝑚) < 0 for a one-sided test. However, for the 
purposes of computing power, as discussed below, researchers must specify an alternative 
hypothesis of at least a particular effect size — that is, a minimum detectable effect size 

                                                      
2It is assumed here that the standard deviation is the same in both counterfactual settings. 
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(MDES).3 A significance test, such as a two-sided or one-sided t-test, is then conducted, and 
one obtains a test statistic given by 

 𝑡𝑡(𝑚𝑚) =
𝐸𝐸𝐸𝐸� (𝑚𝑚)

𝑆𝑆𝑆𝑆� �𝐸𝐸𝐸𝐸� (𝑚𝑚)�
, (3) 

from which a raw p-value is computed. Here, the term “raw” is used to distinguish this p-value 
from a p-value that has been adjusted for multiple hypothesis tests, as discussed below. The raw 
p-value is the probability of a test statistic being at least as extreme as the one observed, given 
that the null hypothesis is true. For a two-sided test, which is the focus of this paper going 
forward, the raw p-value for the 𝑚𝑚𝑡𝑡ℎ test is 𝑝𝑝(𝑚𝑚) = 2 ∗ Pr {𝑇𝑇(𝑚𝑚) ≥ |𝑡𝑡(𝑚𝑚)| }. 4 This expres-
sion means we use our knowledge of the sampling distribution of the t-statistic, and we identify 
where our observed test statistic falls in that distribution when it is centered around zero. 

When testing a single hypothesis under this framework (such that 𝑀𝑀 = 1), researchers 
typically specify an acceptable maximum probability of making a Type I error, 𝛼𝛼. A Type I 
error is the probability of erroneously rejecting the null hypothesis when it is true. The quantity 
𝛼𝛼 is also referred to as the significance level. If 𝛼𝛼 = 0.05, then the null hypothesis is rejected if 
the p-value is less than 0.05, and it is concluded that the intervention had an effect because there 
is less than a 5% chance that this finding is a false positive. 

When one tests multiple hypotheses under this framework (such that 𝑀𝑀 > 1) and one 
conducts a separate test for each of the hypotheses with 𝛼𝛼 = 0.05, there is a greater than 5% 
chance of a false positive finding in the study. If the multiple tests are independent, the probabil-
ity that at least one of the 𝑀𝑀 null hypothesis tests will be erroneously rejected is 1 −Pr (none of 
the null hypotheses will be erroneously rejected) = 1 − (1 − 𝛼𝛼)𝑀𝑀. Therefore, if researchers 
estimate effects on two independent outcomes, the probability of at least one false positive 
finding is almost 10%. If researchers estimate effects on five independent outcomes, the 
probability of a false positive finding is 23%. This Type I error inflation for independent 
outcomes demonstrates the crux of the multiple testing problem. In practice, however, the 
multiple outcomes are at least somewhat correlated, which makes the test statistics correlated 
and reduces the extent of Type I error inflation. Nonetheless, any error inflation can still make it 
problematic to draw reliable conclusions about the existence of effects. As introduced above, to 

                                                      
3An MDES is defined as the smallest true effect size that a study can detect with statistical significance. 

For a discussion of minimum detectable effects (MDEs), which are expressed in outcomes’ units, and MDESs, 
which are expressed in standard deviation units, see, for example, Bloom (1995), Schochet (2005), and Bloom 
(2006). 

4For a one-sided test, depending on the direction of our alternative hypothesis, the raw p-value for the 𝑚𝑚𝑡𝑡ℎ 
test is computed as 𝑝𝑝(𝑚𝑚) = Pr {𝑇𝑇(𝑚𝑚) ≥ 𝑡𝑡(𝑚𝑚) } or 𝑝𝑝(𝑚𝑚) = Pr{𝑇𝑇(𝑚𝑚) ≤ 𝑡𝑡(𝑚𝑚) }. 
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counteract the multiple testing problem, MTPs adjust p-values upward.5 The sections that 
follow will describe how the MTPs do so. 

Recall that the power of an individual hypothesis test is the probability of rejecting a 
false null hypothesis of at least a specified size. If raw p-values are adjusted upward, one is less 
likely to reject the null hypotheses that are true (meaning there is truly no effect of at least a 
specified size), which reduces the probability of Type I errors, or false positive findings. 
Reducing this probability is the goal of MTPs. But if raw p-values are adjusted upward, one is 
also less likely to reject the null hypotheses that are false (meaning there truly is an effect of at 
least a specified size). Therefore, all MTPs reduce individual power (the power of separate 
hypothesis tests for each outcome) compared with the situation when no multiplicity adjust-
ments are made or the situation when there is only one hypothesis test. 

MTPs also reduce all other definitions of power compared with the situation when no 
multiplicity adjustments are made — but not necessarily compared with the situation when 
there is only one hypothesis test. For example, 1-minimal power, the probability of detecting 
effects (of at least a specified size) on at least one outcome — after adjusting for multiplicity — 
is typically greater than the probability of detecting an effect of the same size on a single 
outcome. This increase may or may not occur with other definitions of power (e.g., the proba-
bility of detecting a third, half, or all false null hypotheses), which will be investigated and 
discussed in Section 4. 

2.2 Using MTPs to Protect Against Spurious Impact Findings 

The MTPs that are the focus of this paper fall into two different classes. The first class 
reframes Type I error as a rate across the entire set or “family” of multiple hypothesis tests. This 
rate is called the familywise error rate (FWER; Tukey, 1953). It is typically set to the same 
value as the probability of a Type I error for a single test, or to 𝛼𝛼. MTPs that control the FWER 
at 5% adjust p-values in a way that ensures that the probability of at least one Type I error 
across the entire set of hypothesis tests is no more than 5%. The MTPs introduced by Bonfer-
roni (Dunn, 1959, 1961), Holm (1979), and Westfall and Young (1993) control the FWER. 

The second class of MTPs takes an entirely different approach to the multiple testing 
problem. MTPs in this class control the false discovery rate (FDR). Introduced by Benjamini 
and Hochberg (1995), the FDR is the expected proportion of all rejected hypotheses that are 
erroneously rejected. 

                                                      
5Alternatively, MTPs can decrease the critical values for rejecting hypothesis tests. For ease of presenta-

tion, this paper focuses only on the approach of increasing p-values. 



6 

The two-by-two representation in Table 1 is often found in articles on multiple hypoth-
esis testing. It helps to illustrate the difference between FWER and FDR. Let 𝑀𝑀 be the total 
number of tests. Therefore, we have 𝑀𝑀 unobserved truths: whether or not the null hypotheses 
are true or false. We also have 𝑀𝑀 observed decisions: whether or not the null hypotheses were 
rejected, because the p-values were less than 𝛼𝛼. In Table 1, 𝐴𝐴,𝐵𝐵,𝐶𝐶, and 𝐷𝐷 are four possible 
scenarios: the numbers of true or false hypotheses not rejected or rejected. 𝑀𝑀0 and 𝑀𝑀1 are the 
unobservable numbers of true null and false null hypotheses. 𝑅𝑅 is the number of null hypotheses 
that were rejected, and 𝑀𝑀 − 𝑅𝑅 is the number of null hypotheses that were not rejected. 

In Table 1, 𝐵𝐵 is the number of erroneously rejected null hypotheses, or the number of 
false positive findings. Therefore, the FWER is equivalent to Pr (𝐵𝐵 > 0), the probability of at 
least one false positive finding. Recall the examples above about Type I error inflation when 
testing for effects on independent outcomes in the case that 𝛼𝛼 is set to 0.05 and no MTPs are 
applied. The Type I error was almost 10% when testing effects on two independent outcomes 
and 23% when testing effects on five independent outcomes. These Type I error rates both 
correspond to the FWER. The goal of MTPs that control the FWER is to bring these percent-
ages back down to 5%. 

Also in Table 1, the FDR is equal to 𝐸𝐸(𝐵𝐵
𝑅𝑅

) but is defined to be 0 when 𝑅𝑅 = 0, or when 
no hypotheses are rejected. As is frequently noted in the literature (e.g., Shaffer, 1995; 
Schochet, 2008), the FWER and FDR have different objectives. Control of the FWER protects 
researchers from any spurious findings and so may be preferred when even a single false 
positive could lead to the wrong conclusion about the effectiveness of an intervention. On the 
other hand, the FDR is more lenient with false positives. Researchers may be willing to accept a 

Table 1 
 

Numbers of Hypothesis Types and Decisions 
 

 Observed Decisions  

Unobserved Truths Number not rejected Number rejected Total 
 
Number of true null hypotheses 

 
A 
 

 
B 

 
M0 

 
Number of false null hypotheses 

 
C 
 

 
D 

 
M1 

Total M-R R M 
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few false positives, 𝐵𝐵, when the total number of rejected hypotheses, 𝑅𝑅, is large. Note that under 
the complete null hypothesis that all 𝑀𝑀 null hypotheses are null, the FDR is equal to the FWER, 
because when referring back to Table 1 we have 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑃𝑃(𝑅𝑅 > 0) = 𝐸𝐸 �𝐵𝐵

𝑅𝑅
� = 𝐹𝐹𝐹𝐹𝐹𝐹. 

However, if any effects truly exist, then 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ≥ 𝐹𝐹𝐹𝐹𝐹𝐹. As a result, in the case where there is 
at least one false null hypothesis (at least one true effect at least as large as a specified MDES), 
an MTP that controls the FDR at 5% will have a Type I error rate that is greater than 5%. 

Note that MTPs may provide either weak or strong control of the error rate they target. 
An MTP provides weak control of the FWER or the FDR at level 𝛼𝛼 if the control can only be 
guaranteed when all nulls are true, or when the effects on all outcomes are zero. An MTP 
provides strong control of the FWER or FDR at level 𝛼𝛼 if the control is guaranteed when some 
null hypotheses are true and some are false, or when there may be effects on at least some 
outcomes. Of course, strong control is preferred.6 

2.3 Common MTPs in Education Research and Their Impact on Power 

The five MTPs included in this paper were chosen because they are common in re-
search in education and other social policy areas. An intuitive overview of each procedure, 
expressions defining the calculations involved, and references for more details, including proofs 
of the MTPs’ properties, can be found in Appendix A. The goal of the discussion here is to 
briefly summarize the features of the MTPs that affect statistical power. 

The first feature of an MTP that affects its statistical power is whether it controls the 
FWER or the FDR. Recall that the Bonferroni, the Holm, and both Westfall-Young MTPs 
control the FWER, while the Benjamini-Hochberg MTP controls the FDR. MTPs that control 
the FDR adjust p-values upward less than MTPs that control the FWER. Consequently, MTPs 
that control the FDR will typically have more power than FTPs that control the FWER. Howev-
er, as discussed earlier, a disadvantage of MTPs that control the FDR is that they are more 
lenient with false positives than MTPs that control the FWER. 

A second feature of an MTP that affects its statistical power is whether it is “single-
step” or “stepwise.” Single-step procedures adjust each p-value independently of the other 
p-values. For example, the Bonferroni MTP multiplies all raw p-values by 𝑀𝑀. Therefore, one 
p-value adjustment does not depend on other p-value adjustments, only on the number of tests. 
In contrast, stepwise procedures first order raw p-values (or test statistics), and then adjust 
according to the order of the tests. The adjustments depend on null hypotheses already rejected 

                                                      
6It is beyond the scope of this paper to provide technical details as to how the MTPs achieve strong or 

weak control, but proofs of these properties can be found in, for example, Ewens and Grant (2005) and 
Benjamini and Hochberg (1995). 
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in previous steps. For example, the Holm MTP — the stepwise counterpart to the Bonferroni 
MTP — orders raw p-values from smallest to largest. The procedure then multiplies the 
smallest p-value by 𝑀𝑀, the second smallest p-value by M-1, and so on, but also enforces that 
each adjusted p-value is greater than or equal to the previous adjusted p-value and that it is not 
greater than one. (For more details, see Appendix A.) Overall, stepwise MTPs allow for less 
adjustment than single-step MTPs in later steps, and therefore preserve more power. The 
Bonferroni and one of the Westfall-Young MTPs are single-step; the Holm and Benjamini-
Hochberg MTPs and the other Westfall-Young MTP are stepwise. Note that stepwise proce-
dures may be “step-up” or “step-down.” Examples of both are included in the five MTPs 
studied in this paper, as described in Appendix A. 

In the discussion that follows, the following shorthand is employed, which includes in-
formation on whether the MTPs are single-step or stepwise: BF-SS for Bonferroni (SS = single-
step), HO-SD for Holm (SD = step-down), WY-SS and WY-SD for Westfall-Young single-step 
and step-down, and BH-SU for Benjamini-Hochberg (SU = step-up). 

Finally, a third feature of an MTP that affects its statistical power is whether or not it 
takes into account the correlation of test statistics. The Bonferroni and Holm procedures 
strongly control the FWER when the multiple tests’ statistics are correlated, but they adjust 
p-values more than is necessary in that case. The truth of this assertion can be seen if one 
considers the scenario in which all tests are perfectly correlated. Then one would not need to 
adjust p-values in order to control the FWER (because there would be essentially just one 
outcome), yet the p-values would be increased substantially, to an extent depending on M. 
Along with the Bonferroni and Holm MTPs, the Benjamin-Hochberg MTP also does not take 
correlations into account.7 

In contrast, both of the Westfall-Young MTPs rely on the estimation of the joint distri-
bution of test statistics when the “complete null hypothesis” (that there are not effects on any of 
the outcomes) is true. This joint distribution of the test statistics is estimated from the study’s 
data. For example, permutations of the treatment indicator can be used to estimate impacts 
when the association between treatment status and the outcome is broken. Random permuta-
tions of the research group assignments are conducted a large number of times, resulting in a 
distribution of test statistics under the complete null. Because the actual data are used to 
generate this null distribution, correlations among the test statistics are captured. Then observed 
test statistics can be compared with the distribution of test statistics under the complete null 
  

                                                      
7The Benjamini-Hochberg procedure was originally shown to control the FDR for independent test statis-

tics. However, Benjamini and Yekutieli (2001) showed that it also controls the FDR for true null hypotheses 
with “positive regression dependence.” This condition is satisfied for most applications in practice. 
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hypothesis.8 Again, for more details, see Appendix A. The main point is that by taking the 
correlations into account, one can make p-value adjustments that are not overly conservative, 
and thus better preserve power. 

Table 2 summarizes the essential features of the MTPs. Empirical findings on how 
much these factors affect each definition of power are presented in Section 4. 

3. Estimating Power in Studies of Impacts on Multiple Outcomes 
This section of the paper summarizes a methodological approach for estimating power when 
investigating impacts on multiple outcomes and when using one of the MTPs presented above. 
It then provides an illustrative example of how researchers can use the estimation approach to 
guide the design of a study. It describes how to think about some of the needed assumptions, 
some of which are different from those needed to estimate the power of studies focused on a 
single outcome. 

As noted above, the power estimation methodology described here focuses on studies in 
which multiplicity is due to having multiple outcomes. It also focuses on studies in which one is 
using the simplest research design and analysis plan that education studies typically use in 
practice: a randomized trial with the blocked randomization of individuals, in which effects are 
estimated using a model that has block-specific intercepts and that assumes constant effects 
across blocks. 

                                                      
8Instead of using test statistics, the Westfall-Young MTPs can alternatively compare raw p-values with the 

estimated joint null distribution of p-values. 

Table 2  

Summary of Features of MTPs 

 Controls FWER 
or FDR 

Single-Step or 
Stepwise 

Accounts for 
Correlation Between 
Tests 

Bonferroni (BF-SS) FWER Single-step No 
Holm (HO-SD) FWER Stepwise No 
Westfall-Young (WY-SS) FWER Single-step Yes 
Westfall-Young (WY-SD) FWER Stepwise Yes 
Benjamini-Hochberg (BH-SU) FDR Stepwise No 
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3.1 Overview of Power Estimation Methods 

For this RCT design and these assumptions of focus, the model for estimating impacts 
on the 𝑚𝑚𝑡𝑡ℎ of 𝑀𝑀 outcomes is given by: 

 𝑌𝑌𝑖𝑖(𝑚𝑚) = 𝜓𝜓(𝑚𝑚)𝑇𝑇𝑖𝑖 + �𝜃𝜃𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘𝑗𝑗𝑖𝑖

𝐽𝐽

𝑗𝑗=1

+ � 𝛾𝛾𝑘𝑘(𝑚𝑚)𝐶𝐶𝑘𝑘𝑖𝑖(𝑚𝑚)
𝐾𝐾(𝑚𝑚)

𝑘𝑘=1

+ 𝑟𝑟𝑖𝑖(𝑚𝑚), (4) 

where, for individual 𝑖𝑖, 𝑌𝑌𝑖𝑖(𝑚𝑚) is the 𝑚𝑚𝑡𝑡ℎ outcome; 𝑇𝑇𝑖𝑖 is the treatment indicator; 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘𝑗𝑗𝑖𝑖 is an 
indicator of whether individual 𝑖𝑖 belongs to the 𝑗𝑗𝑡𝑡ℎ block; 𝐶𝐶𝑘𝑘𝑖𝑖(𝑚𝑚) is the 𝑘𝑘𝑡𝑡ℎ individual-level 
covariate; and 𝑟𝑟𝑖𝑖(𝑚𝑚) is the residual, normally distributed with mean zero and variance 𝜖𝜖2(𝑚𝑚).9 
The coefficient 𝜓𝜓(𝑚𝑚) is the treatment effect on the 𝑚𝑚𝑡𝑡ℎ outcome, as defined in (1) using the 
counterfactual framework. 

In this model, the standard error of the treatment effect estimate, 𝜓𝜓�(𝑚𝑚) is given by 

𝑆𝑆𝑆𝑆�𝜓𝜓�(𝑚𝑚)� = �
𝜎𝜎2(𝑚𝑚)(1 − 𝑅𝑅2(𝑚𝑚))

𝑇𝑇�(1 − 𝑇𝑇�)𝐽𝐽𝑛𝑛𝑗𝑗
, (5) 

where 𝜎𝜎2(𝑚𝑚) is the pooled outcome variance of the 𝑚𝑚𝑡𝑡ℎ outcome;10 𝑅𝑅2(𝑚𝑚) is the proportion of 
the variance in the 𝑚𝑚𝑡𝑡ℎ outcome that is explained by the baseline covariates (including the 
block indicators); 𝑇𝑇� is the proportion of the sample within each block that is assigned to the 
treatment group; 𝐽𝐽 is the number of blocks and 𝑛𝑛𝑗𝑗 is the number of individuals within each 
block (Bloom, 2006). 

When expressing the estimated treatment effect as an effect size, as defined in the pre-
vious section, the standard error of the effect size estimate is given by 

 

𝑆𝑆𝑆𝑆 �𝐸𝐸𝐸𝐸� (𝑚𝑚)� = 𝑆𝑆𝑆𝑆(
𝜓𝜓�(𝑚𝑚)
𝜎𝜎(𝑚𝑚)) 

= �
1 − 𝑅𝑅2(𝑚𝑚)
𝑇𝑇�(1 − 𝑇𝑇�)𝐽𝐽𝑛𝑛𝑗𝑗

. 

(6) 

                                                      
9The assumption of normally distributed residuals is not needed to estimate impacts or implement the 

MTPs. 
10Here it is assumed that the variance of the outcome is the same in both the treatment and control groups. 
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For convenience, let 𝑄𝑄(𝑚𝑚) ≡ 𝑆𝑆𝑆𝑆 �𝐸𝐸𝐸𝐸� (𝑚𝑚)�. To estimate 𝑄𝑄(𝑚𝑚), known values are in-
serted for 𝑇𝑇�, 𝐽𝐽, and 𝑛𝑛𝑗𝑗, and all other parameters in (6) are replaced by sample estimates. Then, 
when testing the 𝑚𝑚𝑡𝑡ℎ null hypothesis, 𝐸𝐸𝐸𝐸(𝑚𝑚) = 0, the test statistic for a t-test is given by 

 𝑡𝑡(𝑚𝑚) =
𝐸𝐸𝐸𝐸� (𝑚𝑚)
𝑄𝑄�(𝑚𝑚)

. (7) 

When the null is true, 𝑡𝑡(𝑚𝑚) has a 𝑡𝑡-distribution with mean zero and degrees of freedom 
𝑑𝑑𝑑𝑑. For our assumed model in (4), 𝑑𝑑𝑑𝑑(𝑚𝑚) = 𝐽𝐽𝑛𝑛𝑗𝑗 − 𝑔𝑔∗(𝑚𝑚) − 1, where 𝑔𝑔∗(𝑚𝑚) is the total 
number of baseline covariates included in the model for the 𝑚𝑚𝑡𝑡ℎ outcome, including the block 
indicators such that 𝑔𝑔∗(𝑚𝑚) = 𝐾𝐾(𝑚𝑚) + 𝐽𝐽. 

As mentioned above, in evaluations, researchers typically design studies so that they 
will have sufficient statistical power to detect, with a p-value less than 𝛼𝛼, at least the smallest 
effect that would be meaningful for the program under study. This is the MDES when focusing 
on standard deviation units, as is the case here. If the 𝑚𝑚𝑡𝑡ℎ hypothesis is false such that |𝐸𝐸𝐸𝐸(𝑚𝑚)| 
is greater than or equal to a specific MDES, then 𝑡𝑡(𝑚𝑚) has a 𝑡𝑡-distribution with mean 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚)/𝑄𝑄(𝑚𝑚), and again degrees of freedom 𝑑𝑑𝑑𝑑. 

When 𝑀𝑀 > 1, one can define a set of 𝑀𝑀 null hypotheses and 𝑀𝑀 alternative hypotheses. 
The set of null hypotheses is 𝐸𝐸𝐸𝐸(𝑚𝑚) = 0 for all 𝑚𝑚. This set defines the complete null hypothe-
sis (referred to as 𝑯𝑯𝑯𝑯) that there are not effects on any of the outcomes. The set of two-sided 
alternative hypotheses focused on minimum detectable effects (referred to as 𝑯𝑯𝑯𝑯), is 
|𝐸𝐸𝐸𝐸(𝑚𝑚)| ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚) for 𝑚𝑚 = 1, … ,𝑀𝑀, where the MDES may vary for each outcome. 

Under the complete null hypothesis, 𝑯𝑯𝑯𝑯, the set of test statistics for all 𝑀𝑀 hypothesis 
tests, which can be written collectively as 𝒕𝒕𝒕𝒕, have a multivariate 𝑡𝑡-distribution with means of 
zero, degrees of freedom equal to the vector 𝒅𝒅𝒅𝒅, and correlation matrix 𝝆𝝆. Under the set of 
specific alternative hypotheses, 𝑯𝑯𝑯𝑯, the set of test statistics, which can be written collectively as 
𝒕𝒕𝒕𝒕, have the same multivariate 𝑡𝑡-distribution — except that the means are equal to the vector 
𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴/𝑸𝑸. 

Thus, the following are the essential insights for estimating power when adjusting for 
multiple hypothesis tests due to estimating effects on multiple outcomes: 

1. When one assumes a correlational structure for the test statistics, the joint null dis-
tribution of the test statistics for the 𝑀𝑀 tests is known. 

2. When one specifies an MDES for each outcome and when one can identify 
𝑄𝑄(𝑚𝑚) ≡ 𝑆𝑆𝑆𝑆(𝜓𝜓�(m)) for each outcome, as we have above, the joint alternative dis-
tribution of the test statistics for the 𝑀𝑀 tests is also known. 
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3. Therefore, the test statistics 𝒕𝒕𝒕𝒕 and 𝒕𝒕𝒕𝒕 can be generated (i.e., simulated) with statis-
tical software. That is, one can generate a large number of test statistics under 𝑯𝑯𝑯𝑯 
and under 𝑯𝑯𝑯𝑯, as if the study had been conducted a large number of times. For ex-
ample, one may simulate test statistics that correspond to results from 10K draws 
from the assumed population. Doing so results in a matrix of 10K rows and 𝑀𝑀 col-
umns for both 𝒕𝒕𝒕𝒕 and 𝒕𝒕𝒕𝒕. Additionally, 𝒕𝒕𝒕𝒕 and 𝒕𝒕𝒕𝒕 can be converted to 10K x 𝑀𝑀 
matrices of p-values, 𝒑𝒑𝒑𝒑 and 𝒑𝒑𝒑𝒑. 

Once 𝒕𝒕𝒕𝒕 and 𝒕𝒕𝒕𝒕, as well as 𝒑𝒑𝒑𝒑 and 𝒑𝒑𝒑𝒑, have been generated, any of the MTPs can be 
implemented in order to obtain a 10K x 𝑀𝑀 matrix of adjusted p-values. 

For example, since each row of 𝒑𝒑𝒑𝒑 contains, for a single sample, the raw p-values that 
one could obtain for M effect estimates when there are true effects equal to the MDESs speci-
fied under 𝑯𝑯𝑯𝑯, these p-values can be easily adjusted using the Bonferroni, Holm, or Benjamini-
Hochberg MTPs. Recall from Section 2 that for these MTPs, only the raw p-values are needed 
to make the adjustments. The adjustments are repeated in every row of the matrix, or for all 10K 
samples from the assumed population, resulting in a new matrix of p-values corresponding to 
any given MTP: 𝒑𝒑�𝐵𝐵𝐵𝐵−𝑆𝑆𝑆𝑆,𝒑𝒑�𝐻𝐻𝐻𝐻−𝑆𝑆𝑆𝑆 , or 𝒑𝒑�𝐵𝐵𝐵𝐵−𝑆𝑆𝑆𝑆 . 

It is more complicated to obtain p-values adjusted by the Westfall-Young single-step 
and step-down MTPs. As described in Section 2, in this MTP, observed test statistics (or 
p-values) can be compared with the distribution of test statistics (or p-values) under the com-
plete null hypothesis. In the implementation for this paper, test statistics were used. Therefore, 
both 𝒕𝒕𝒕𝒕 and 𝒕𝒕𝒕𝒕 are used to obtain adjusted p-values. That is, to adjust p-values for one data 
sample, one row of 𝒕𝒕𝒕𝒕 is compared with all rows in 𝒕𝒕𝒕𝒕. 

For each MTP, the resulting 10K x 𝑀𝑀 adjusted p-values can then be compared with a 
specified value of 𝛼𝛼 and null hypothesis rejections can be recorded. Doing so results in a 10K 
x 𝑀𝑀 matrix of hypothesis rejection indicators from which all definitions of power can be 
computed: 

● Individual power for the 𝑚𝑚𝑡𝑡ℎ outcome is the proportion of the 10K rows in 
which the 𝑚𝑚𝑡𝑡ℎ null hypothesis was rejected (the mean of the 𝑚𝑚𝑡𝑡ℎ column of 
indicators). 

● 𝑑𝑑-minimal power is the proportion of the 10K rows in which at least 𝑑𝑑 of the 
𝑀𝑀 null hypotheses were rejected. 

● Complete power is the proportion of the 10K rows in which all of the null 
hypotheses were rejected based on the raw p-values rather than adjusted 
p-values. The reason that complete power is based on raw p-values is that the 
probability of all tests having a raw p-value less than 𝛼𝛼 when the null hy-
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pothesis is true is less than the probability that any single test would have a 
p-value less than 𝛼𝛼 by chance (Koch & Gansky, 1996; Westfall et al., 2011). 

In effect, the power estimation approach laid out above relies on simulation, but rather 
than (first) simulating a large number of datasets, (second) carrying out impact analyses on each 
simulated dataset, and (third) adjusting the resulting p-values from each analysis, the approach 
skips to the third step, saving lots of effort and computing time.11 

Note that this approach of simulating test statistics builds on work by Bang, Young, and 
George (2005), who use simulated test statistics to identify critical values based on the distribu-
tion of the maximum test statistics. Their approach produces the same estimates as the approach 
described here for the single-step Westfall-Young MTP. Chen et al. (2011) derived explicit 
formulas for d-minimal powers of stepwise procedures and for complete power of single-step 
procedures, but only for up to three tests. The approach presented here is more generally 
applicable, as it can be used for all MTPs, for any number of tests, and for all definitions of 
power discussed in the present paper. 

To check that the power estimates obtained from the methodological approach just de-
scribed are correct, three validation analyses were conducted. First, for the design of interest (a 
blocked RCT) and the assumed model (with constant effects across all blocks and with block 
dummies included in the intercept), estimates of individual power for a single hypothesis test 
were compared with those computed in PowerUp! (Dong & Maynard, 2013, Table RBD2-c). 
The comparisons, which match closely, can be found in Appendix C, Table C.1. Second, 
assuming a single block, individual power estimates after adjusting with the Bonferroni, Holm, 
and Benjamini-Hochberg MTPs were compared with power-estimation results in Schochet 
(2008). Power estimates for Westfall-Young MTPs are not found in this paper. Results of these 
comparisons, which also match closely, can be found in Table C.2. For the third validation 
exercise, a selection of results obtained from the methodology described above — for all 
definitions of power examined in this paper — were compared with power estimates obtained 
from Monte Carlo data simulations. In these simulations, 2,000 samples were generated 
according to the assumed study design and model. In each data sample, M regression models 
specified as in (4) were fit, and 𝑀𝑀 effect estimates and corresponding raw p-values were 
computed and adjusted. Then each definition of power was computed the same way as de-
scribed above. Table C.3 shows comparisons between power estimates obtained with these data 
simulations and results obtained with the approach above, which skips straight to the simulation 

                                                      
11When the power estimation methodology is coded in R (as shown in Appendix B), all power estimates 

for all MTPs other than the Westfall-Young MTPs take less than one minute. Power estimates for Westfall-
Young MTPs take a few minutes — depending on the number of samples, processing power, and degree of 
parallelization available. 
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of test statistics. Again, the comparisons are extremely close. Together, the three validation 
exercises demonstrate the accuracy of the methodology proposed in this paper. 

3.2 An Example of Estimating Power When Adjusting for Multiple Tests 

Suppose researchers are designing a multisite trial in which they plan to investigate the 
effects of an education intervention on three confirmatory outcomes — assessments in three 
different subject areas. Based on prior research, they assume that the correlation between all 
pairs of these outcomes is 0.5. They plan to use the model specified in (4) to estimate effects, 
and they will have a baseline measure of each assessment, each with an 𝑅𝑅2 of 0.4. Because the 
sites (the blocks) will also explain variation in the outcomes, they assume an overall 𝑅𝑅2 of 0.5 
for all three impact models. Additionally, they plan to have 20 sites in the study, with 50 
individuals per site, and 50% of the individuals at each site will be randomly assigned to the 
treatment group. To counteract the multiplicity problem, they plan to use the Holm correction to 
control the FWER at 5%. The researchers expect the intervention to have an effect on all three 
outcomes with an effect size of at least 0.125 standard deviations. They want to be able to detect 
effects as small as this size; therefore the desired MDES for each outcome is 0.125. While they 
expect effects on all outcomes, after discussing their study with stakeholders the researchers 
realize that policymakers would consider the intervention to be a success if it raises test scores 
by at least 0.125 standard deviations in at least one subject area. Therefore, the researchers 
define power in their study as the probability of rejecting at least one of an assumed three false 
null hypotheses (1-minimal power). 

If the researchers ignore the fact that they will make adjustments for multiplicity, they 
would estimate that the study has individual power of 80% for each outcome, given their 
assumptions. However, they want to know the power of their study when they take their actual 
analysis plan into account. First, they generate 𝒕𝒕𝒕𝒕. Therefore, they simulate a 10K-row x 3-
column matrix of test statistics following a multivariate 𝑡𝑡-distribution with correlation matrix 

�
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

� , and means equal to 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚)
𝑄𝑄(𝑚𝑚) =

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚)

� 1 − 𝑅𝑅2(𝑚𝑚)
𝑇𝑇�(1 − 𝑇𝑇�)𝐽𝐽𝑛𝑛𝑗𝑗

 

=
0.125

� 1 − (0.5)2
0.5(0.5)(20)(50)

 

 = 2.3 

(8) 

for all 𝑚𝑚, and 𝑑𝑑𝑑𝑑(𝑚𝑚) = 𝐽𝐽𝑛𝑛𝑗𝑗 − 𝑔𝑔∗(𝑚𝑚)− 1 = 20(50) − 21 − 1 = 1,978 for all 𝑚𝑚. They then 
convert each test statistic in their 10K x 3 matrix to a p-value. The resulting matrix of p-values 
(𝒑𝒑𝒑𝒑) is a simulation of raw, or unadjusted, p-values that would be obtained by estimating 
impacts 10K times (in 10K samples from the target population). Next, the researchers adjust the 
three p-values in each of the 10K rows, following the Holm procedure, as described in the 
previous section. Finally, since they focus on 1-minimal power, their statistical power is the 
proportion of the 10K rows in which at least one of three p-values is less than 0.05. 

They find that 1-minimal power — the probability of detecting at least one true effect 
with effect size 0.125 or greater — is 87% if such effects actually exist on all three outcomes. 
That is, if there are impacts of a magnitude at least as large as a 0.125 effect size on all three 
outcomes, they have an 87% chance of a statistically significant effect estimate for at least one 
of them. Their power is better than the typical 80% standard. With 80% 1-minimal power, their 
MDES is smaller than 0.125; it is 0.114. Alternatively, they can include 17 sites with 50 
individuals instead of 20 sites with 50 individuals to achieve at least 80% power for an MDES 
of 0.125 (1-minimal power is 82% in this case). Also, while 1-minimal power is sufficient, they 
may want to be able tell their stakeholders that with their original MDES and sample size 
specifications, the probability of detecting impacts on at least two of the three outcomes is 73% 
but that the probability of detecting impacts on all three outcomes is 61%. 

3.3 Notes About the Assumptions 

Before embarking on power calculations, the researchers in the example above had to 
decide on the number of outcomes for which they would adjust for multiplicity, the MTP they 
would use to make those adjustments, and the definition of power that best fit with the objective 
of their study. They also made a set of assumptions for each outcome that corresponded to those 
they would have made if they had only had one outcome. That is, they assumed the number of 
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blocks; the number of individuals within blocks;12 the proportion of individuals assigned to the 
treatment group; the explanatory power of baseline covariates, including block indicators (𝑅𝑅2); 
and an MDES. In the above example, the researchers assumed the same 𝑅𝑅2 and the same 
MDES for all outcomes. However, these two may often vary by outcome in practice. 

In addition, the researchers must make some new types of assumptions that only come 
into play when estimating power that accounts for multiplicity adjustments. First, they must 
assume the correlations between the test statistics. These 𝑀𝑀 pairwise correlations are equal to 
the 𝑀𝑀 pairwise correlations between the residuals in the M impact models. If there are no 
covariates in the impact models or if the 𝑅𝑅2′s of the covariates are equivalent in all impact 
models, then the correlations between the test statistics are equal to the correlations between the 
outcomes. However, having different 𝑅𝑅2′s across the impact models reduces the correlations 
between the residuals and therefore between test statistics.13 Models of outcomes that are highly 
correlated are more likely to have residuals that are highly correlated because baseline covari-
ates will tend to have similar 𝑅𝑅2′s. The gaps between the correlations between outcomes and 
the correlations between residuals — and therefore the test statistics — may be wider for 
moderately or weakly correlated outcomes. In any case, the upper bounds of correlations 
between the test statistics are the correlations between the outcomes. 

The second new assumption that must be considered when estimating power that takes 
multiplicity adjustments into account is the proportion of outcomes on which there are truly 
impacts of at least the size of the researchers’ desired MDESs, or, equivalently, the number of 
truly false null hypotheses. There is one scenario in which this assumption does not matter, 
which is the scenario when one focuses on individual power and uses a single-step MTP. In this 
case, when adjusting a p-value for a single test, the information from other tests is disregarded. 
For all other scenarios, however, this assumption can be an important one. 

Researchers may be inclined to assume that there will be effects on all outcomes, as hy-
potheses of effects probably drive the selection of outcomes in the first place. And when 
estimating power for a single hypothesis test, power is only defined when a true effect exists. 
However, as will be shown in the next section, if the researchers are incorrect and there turn out 
not to be effects on all outcomes, the probability of detecting the effects that do actually exist 
can be diminished, sometimes substantially. 

                                                      
12When the number of individuals per block is not the same within each block, then nj is assumed to be the 

harmonic mean of the numbers of individuals per block (Bloom, 2006). 
13For example, one of the multiple outcomes may have a baseline covariate with a high 𝑅𝑅2 while another 

may have a baseline covariate with a smaller 𝑅𝑅2. Also, block dummies may explain more variation in some 
outcomes than in others. 
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It is important to point out that under the assumption that there are not truly effects on 
every outcome under study, the definitions of the d-minimal powers (e.g., 1-minimal power, 
1/3-minimal power, etc.) and of complete power become fuzzy. For example, 1/3-minimal 
power is defined as the probability of detecting effects (of a specified size or larger) on at least 
1/3 of the total outcomes (M), regardless of the number of outcomes with actual effects. That is, 
1/3-power is not defined as the probability of detecting effects among the M outcomes on which 
the effects truly exist. Therefore, while power is technically defined based on false nulls, the 
definition is loosened here and includes the probability of erroneous rejections of false nulls 
(which are controlled to occur at no more than 5% for those MTPs that control the FWER). This 
fuzziness of definition is needed because the researcher would only ever define power based on 
the total number of tests. Moreover, if the d-minimal powers are defined only based on truly 
false nulls, then their levels could increase when the proportion of false nulls decreases. 
Complete power has the same issue. If there are truly only effects on two of the three outcomes, 
then complete power is not the probability of rejecting just two false null hypotheses. In this 
case, complete power is undefined. 

4. Empirical Findings on How Various Factors Affect Power 
This section uses the power estimation approach in Section 3 to investigate how power varies 
with the many factors that affect it in studies that adjust for multiplicity due to testing for effects 
on multiple outcomes. Sticking with the example of a blocked RCT with 20 blocks of 50 
individuals, in which half are assigned to the treatment group, in which the targeted MDES is 
0.125 for all outcomes on which there are effects, and in which effects will be estimated with 
the model in (4), the following factors are varied as described below: 

● The number of outcomes. This number is equivalent to the number of hy-
pothesis tests, and is specified to be 3, 6, 9, or 12. 

● The definition of power. The following definitions are considered: individual 
power (for each individual outcome, the probability of detecting a true effect 
as large as the specified MDESs); 1-minimal power, 1/3-minimal power, and 
2/3-minimal power (across all outcomes with true effects as large as the 
specified MDESs, the probability of detecting at least 1, 1/3, and 2/3 respec-
tively); and complete power (the probability of detecting effects as large as 
the specified MDESs for all outcomes) 

● The MTP used. Each of the five MTPs discussed in Section 2 is explored. 

● The correlations between the test statistics.  
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● The explanatory power of the covariates (𝑅𝑅2′𝑠𝑠). It is well known that high-
er 𝑅𝑅2′s are associated with more power. The point of varying the 𝑅𝑅2′s here 
is to investigate how they affect the relative power when comparing the dif-
ferent MTPs with each other and with the situation when no adjustments 
are made. The benchmark 𝑅𝑅2′s are 0.5 for all outcomes, and they are low-
ered to 0.1 for comparison. The 𝑅𝑅2′s are assumed to be the same for all 
outcomes; therefore the correlations between the test statistics equal the 
correlations between the outcomes. 

● The proportion of outcomes on which there are truly impacts at least as 
large as the specified MDESs. This proportion is of course unknown to re-
searchers, but as discussed above, it is an assumption that needs to be con-
sidered. 

4.1 Findings for Individual Power 

Figure 1 presents estimates of individual power for 20 blocks of 50 individuals, as-
suming an MDES of 0.125 and an 𝑅𝑅2 of 0.5 for all outcomes. With this set of assumptions, 
individual power for a single hypothesis test (or for the situation when no multiplicity adjust-
ments are made) is 80%. Plot (a) in the figure presents estimates when the correlation 
between all pairs of outcomes is low, 0.2, and plot (b) in the figure presents estimates when 
this correlation is high, 0.8. 

Along the top X-axis in both plots, the number of outcomes is varied (3, 6, 9, or 12) and 
along the bottom X-axis, the MTP’s are varied within each number of outcomes. The shadings 
of the dots (as explained in the legend at the bottom of the page) indicate the proportion of the 
outcomes on which there are truly effects. Within each column, the darkest-shaded dot indicates 
individual power when there are truly effects on all three outcomes, the medium-shaded dot 
indicates individual power when there are truly effects on 2/3 of the outcomes, and the lightest-
shaded dot indicates individual power when there are truly effects on just 1/3 of the outcomes. 
Note that for the single-step MTPs there is just one dot, because as discussed earlier, the 
proportion of outcomes with true effects does not affect power when using single-step MTPs. 

Figure 1, plot (a) shows that compared with individual power when conducting just one 
hypothesis test (80%), after adjusting for multiplicity individual power can be — but is not 
necessarily — substantially lower. As expected, the extent of power loss depends on the number 
of outcomes and the MTP used. For stepwise MTPs, the extent of power loss also depends on 
the proportion of outcomes with true effects at least as large as 0.125 standard deviations. 
However, even if one were to assume that only 1/3 of the outcomes truly have effects, the 
stepwise MTPs still improve upon their single-step counterparts. This improvement can be seen 
by comparing HO-SD with BF-SS and WY-SD with WY-SS. 
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As expected, Benjamini-Hochberg (BH-SU), which controls the FDR, results in the 
least power loss compared with the situation when no adjustments are made. This MTP’s 
power advantage over the other MTPs that control the FWER is more pronounced when there 
are more hypothesis tests. With as many as 12 hypothesis tests, the individual power is 75% 
in the case that there are truly effects on all outcomes. While power drops off considerably 
when there are truly effects on just 2/3 or 1/3 of the outcomes, the power that remains after 
adjusting with BH-SU is substantially greater than the power that remains after adjusting with 
any of the other MTPs. 

A lesson here is that when there are a large number of hypothesis tests, BH-SU is great-
ly preferred for preserving individual power. With this many hypothesis tests, using BH-SU, 
and thereby controlling the FDR, may also make sense — with as many as 12 tests, researchers 
may be willing to tolerate an increased likelihood of a false positive finding because BH-SU is 
designed to produce false positive findings only along with many true positive findings. On the 
other hand, with a small number of tests, BH-SU may not make sense even though it results in 
the best power, because an erroneous rejection could alter the conclusions about an interven-
tion’s effectiveness. 

Of the MTPs that control the FWER, the stepwise procedures (HO-SS and WY-SS) 
perform almost equivalently when the correlation between the test statistics is low (0.2), as in 
plot (a). When the test statistics are highly correlated (0.8), as shown in plot (b), WY-SD results 
in more power than HO-SS. In addition, when test statistics are highly correlated, WY-SD 
produces a level of individual power that is much closer to BH-SU, compared with the situation 
when test statistics are modestly correlated. In sum, to limit the probability of a false positive 
finding across a set of tests and to maximize individual power, the WY-SD MTP, which takes 
the correlation of test statistics into account, may be worth the added computational complexity 
when the correlation between tests is large. However, HO-SD, which is much simpler and 
which can be directly computed from raw p-values, is also a good choice for controlling the 
FWER when the correlation between test statistics is not high or the number of tests is small. 

Figure 2 presents the same plots as Figure 1 but in these plots, the 𝑅𝑅2 for all outcomes is 
lowered from 0.5 to 0.1, while all other assumptions remain the same. In this case, power for a 
single hypothesis test is lowered from 80% to 67%, as seen by the dashed horizontal line in the 
plots. The main lesson of the plots in Figure 2 is that regardless of the MTP used, a lower 𝑅𝑅2 
increases the power losses relative to the situation when only one hypothesis test is conducted or 
when no adjustments are made. This increased power loss can be seen in the greater distances 
between the dots and the dashed horizontal lines in Figure 2 compared with Figure 1. 
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4.2 Findings for 1-Minimal, 1/3-Minimal, and 2/3-Minimal Power 

Figures 3 and 4 present estimates of 1-minimal power: the probability of detecting at 
least one true effect at least as large as the specified MDESs. The plots in these figures are 
similar to those already presented except that now along the top X-axis, the correlation 
between test statistics is varied, from 0 to 0.9. In Figure 3 the number of tests is held constant 
at three, and in Figure 4 the number of tests is held constant at six. All other assumptions are 
the same as in earlier plots. The benchmark power level obtained when testing just one 
hypothesis is again 80%. 

Figure 3 demonstrates that with three uncorrelated false nulls, the probability of re-
jecting at least one of them is substantially greater than the benchmark power level. As the 
correlation increases, this probability declines but still remains at or above the benchmark of 
80%, regardless of the MTP used, unless the correlation is as high as 0.9 and an MTP other 
than one of the WY options is used. When just two out of three of the null hypotheses are 
actually false (meaning there are true effect sizes of at least 0.125), as seen by the medium-
shaded dots, the probability of rejecting at least one null (of three, not two, as discussed 
earlier) is higher than the 80% benchmark when the correlation is 0.5 or less. It is only when 
just one of the three null hypotheses is actually false that there is a substantial loss of power 
compared with the benchmark. 

A comparison of Figure 4 with Figure 3 shows that, regardless of the proportion of null 
hypotheses that are truly false and regardless of the MTP used, 1-minimal power improves with 
more tests. With six tests, even when just 1/3 of them are actually false, 1-minimal power is not 
far from the 80% benchmark. This result does not imply that researchers should test for effects 
on a large number of outcomes to improve their chances of finding impacts. Rather, researchers 
should focus on the primary outcomes among which at least one needs to have a statistically 
significant finding in order for there to be policy implications. 

Both Figures 3 and 4 also show that the choice of MTP matters much less when focus-
ing on 1-minimal power. All MTPs result in similar power levels when the test statistics have a 
low or moderate correlation. When test statistics are highly correlated, the Westfall-Young 
MTPs are preferred, and the simpler single-step version is sufficient. 

Figure 5 focuses on 1/3-minimal power while holding the number of tests fixed at six, 
and Figure 6 focuses on 2/3-minimal power while holding the number of tests fixed at six. 
Recall that 1/3-minimal power (or 2/3-minimal power) is the probability of detecting effects of 
a specified size or larger on at least 1/3 (or 2/3) of the total number of outcomes (M), regardless 
of the number of outcomes with actual effects. With 1/3-minimal power, the trends are similar 
to those observed for 1-minimal power. However, the proportion of outcomes with true effects 
matters more and the choice of MTPs matters more. There can still be improvements over the 
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benchmark when correlations are low and effects exist on all outcomes. With 2/3-minimal 
power, the story is quite different. Figure 6 shows that if researchers need to detect effects on at 
least four of six outcomes after adjusting for multiplicity, then the probability of detecting those 
effects is substantially less than 80% for most correlations and MTPs. 

4.3 Findings for Complete Power 

Figure 7 presents results for complete power — the probability of statistically signifi-
cant effect estimates of impacts for all outcomes on which there are truly effects. Recall from 
earlier that when focusing on complete power, p-values are not adjusted. Therefore, Figure 7 
does not have different results for different MTPs. The X-axis in Figure 7 is the correlation 
between the test statistics. For each correlation, the figure shows the probability of rejecting all 
of two, three, four, five, or six null tests. As shown in the legend, the darkest dot is for two tests 
and the lightest dot is for six tests. 

The primary lesson of Figure 7 is that if researchers follow current standard practice 
and only estimate power for a single hypothesis test (so that their assumed power is 80%) and if 
the success of the intervention under study requires evidence of effects on all of multiple tests, 
then their study is probably substantially underpowered. The extent to which the study is 
underpowered depends on the number of hypothesis tests and the correlation between the tests. 
Take for example the study assumptions in the plot and a correlation of 0.5 between all pairs of 
test statistics. If researchers need to detect effects on three of three outcomes, and effects truly 
exist on all three, then the probability of detecting all three effects is 60%. In order to increase 
this probability to 80%, they would need to increase the number of blocks from 20 of 50 
individuals to 28 of 50 individuals. Otherwise, they would have to be able to assume MDESs on 
all outcomes of 0.148 instead of 0.125. 

5. Discussion 
This section summarizes the empirical findings on how various factors affect statistical power 
when adjusting for multiplicity due to estimating effects on multiple outcomes in a blocked 
randomized trial. It then provides some recommendations for practice and concludes with 
next steps. 

5.1 Summary of Findings 

With Respect to Number of Outcomes 

When researchers are considering the number of outcomes across which they will make 
multiplicity adjustments, the implications depend on (1) which definition of power makes sense 
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for their study and (2) which MTP they use. If the researchers are focusing on individual power, 
then having more outcomes will lead to a decrease in power. This decrease may not be very 
substantial with the Benjamini-Hochberg MTP, which controls the FDR, but power drops off 
much more dramatically with all other MTPs when additional outcomes are added. If research-
ers are focusing on complete power (the power to detect effects at least as large as the MDESs 
on all outcomes), then having more outcomes also leads to a loss of power. In this case, the 
amount of power lost depends on the correlation between the tests. The same is true to a lesser 
extent for power to detect a majority of effects (e.g., 2/3-minimal power). If researchers are 
focusing on 1-minimal power, the probability of detecting at least one effect increases with the 
number of outcomes. 

With Respect to Correlations Between Test Statistics 

The correlations between test statistics have nontrivial implications for all types of 
power. These correlations, which are the pairwise correlations of the residuals in the individual 
regression models, have an upper bound of the pairwise correlations between the outcomes and 
will be lower when the baseline covariates in the models have different 𝑅𝑅2′s. For individual 
power-of-multiple-hypothesis tests, the loss of power compared with the situation when there is 
just one hypothesis test is greater with higher correlations between test statistics. Higher 
correlations between tests also mean that the Westfall-Young MTPs, which take dependencies 
in the data into account, are worth implementing to maximize power when controlling the 
FWER. The step-down version in particular maximizes power the most. Next, 1-minimal power 
and 1/3-minimal power are maximized with independent tests and typically decrease with 
higher correlations between tests — except when the proportion of nulls that are false is small. 
For 2/3-minimal power, the impact of the correlation varies with the MTP used and the propor-
tion of nulls that are false. Finally, complete power improves substantially with higher correla-
tions between test statistics. 

With Respect to the Proportion of Outcomes with True Effects 

Strong hypotheses of effects probably influence researchers’ selection of outcomes. It 
may therefore seem unnecessary to assume true effects on only a subset of outcomes. However, 
the empirical findings in the section above show that if researchers make a mistake and there are 
not truly effects on all outcomes, there can be substantial consequences for detecting those 
effects that actually do exist. 

With Respect to the 𝑅𝑅2′𝑠𝑠 of Baseline Covariates 

Finally, while it is well known that higher 𝑅𝑅2′s are associated with greater power, it 
tends also to be the case that higher 𝑅𝑅2′s provide some protection against power losses from 
multiplicity adjustments (compared with power when estimating effects on one outcome). 
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Higher 𝑅𝑅2′s may also diminish the power gains of 1-minimal and 1/3-minimal power, due to a 
ceiling effect. 

5.2 Recommendations for Practice 

The following recommendations for practice are based on the findings in this paper: 

1. Prespecify all hypothesis tests and prespecify a plan for making multiplicity 
adjustments. 

This paper has demonstrated that if one plans to use MTPs to adjust for multiple tests, 
the change in statistical power can be substantial. Therefore, it seems essential to plan ahead and 
take the consequences of the intended adjustments into account when designing one’s study. 
Otherwise, in some cases, sample sizes may be too small, and studies may be underpowered to 
detect effects as small as a desired size. In other cases, sample sizes may be larger than needed, 
or studies may be powered to detect smaller effects than anticipated. 

2. Think about the definition of success for the intervention under study and 
choose a corresponding definition of statistical power. 

The prevailing default in education studies — individual power — may or may not be 
the most appropriate type of power. In some cases, it may provide misleading estimates of the 
probability that researchers will be able to find sufficient evidence that an intervention was 
successful. If the researchers’ goal is to find statistically significant estimates of effects on all 
primary outcomes of interest, then even after taking multiplicity adjustments into account, 
estimates of individual power can grossly understate the actual power required — complete 
power. On the other hand, if the researchers’ goal is to find statistically significant estimates of 
effects on at least one or on a small proportion of outcomes, then their power may be much 
better than anticipated. They may be able to get away with a smaller sample size, or they may 
be able to detect smaller MDESs. 

The choice of power definition may not be a simple one. First, it may not be easy to de-
fine the success of an intervention. Even when it is easy, aligning the definition of success with 
a definition of power may not always be. For example, even if a program would be considered 
successful should an effect of a specified size be found for at least one outcome, researchers 
may still want sufficient individual power because they want to know the probability of detect-
ing effects on each particular outcome. 

It may be best for researchers to estimate and share power estimates for multiple power 
definitions. For example, consider the case in which a sample size is fixed. The probability of 
detecting statistically significant effects (at least as large as specified MDESs) may be unac-
ceptably low. While complete power may be a goal in this case, it may be valuable for research-
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ers to also be able to say that it is still tenable to achieve a high probability of detecting effects 
on at least half of the outcomes. 

3. Consider whether it is more appropriate to control the FWER or the FDR. 

Even though the Benjamini-Hochberg MTP, which controls the FDR, generally results 
in the most power, it may not necessarily be the best MTP to use. An MTP that controls the 
FDR is more lenient with false positives. Researchers may tolerate a few false positives when 
testing for effects on a large number of outcomes. However, when investigating effects on a 
small number of outcomes, a single false positive is more likely to lead to the wrong conclusion 
about an intervention’s effectiveness. Therefore, with a small number of outcomes, controlling 
the FWER is likely to be preferable. 

If researchers determine that it makes sense to control the FDR, they should use the 
Benjamini-Hochberg MTP. When controlling the FWER, the Westfall-Young step-down MTP 
generally results in the most power. However, if there will be a low or moderate correlation 
between outcomes or if the study will use a 1-minimal definition of power, the Holm MTP or 
the single-step Westfall-Young MTP may suffice. 

4. Consider the possibility that there may not be impacts on all outcomes. 

For the reasons summarized in Section 5.1, it is important to incorporate this possibility 
when estimating power. 

5. Take all of the above into account in the design phase of a study to estimate 
power, sample size requirements, or MDESs. 

Working through recommendations (1) to (4) is not a linear process. Each affects the 
others. For example, using a 1-minimal definition of power will allow researchers to consider 
more outcomes without any power loss, whereas other definitions of power may mean that they 
want to be very parsimonious in selecting their primary outcomes. Also, the Benjamini-
Hochberg MTP may be preferable for a large number of outcomes, but a 1-minimal definition 
of power may mean that the Benjamini-Hochberg MTP is too dangerous, as the elevated chance 
of a false positive finding may not be tolerable when success rests on just one statistically 
significant effect. 

5.3 Next Steps 

This paper focused on a blocked RCT in which effects are estimated using a model with 
block-specific intercepts and with the assumption of constant effects across blocks. Extensions 
to other analysis assumptions and designs should be straightforward. They would simply 
involve defining 𝑄𝑄(𝑚𝑚) ≡ 𝑆𝑆𝑆𝑆 �𝐸𝐸𝐸𝐸� (𝑚𝑚)�, which is a function of the standard error of the effect 
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estimator in the regression model used. Then, once we know 𝑄𝑄(𝑚𝑚) and an assumption for the 
correlations between test statistics, we can generate those test statistics and use them to empiri-
cally estimate all definitions of power for all MTPs. 

This paper also focused on studies investigating effects on multiple outcomes. A next 
step for this research is to extend the methodology to estimate power when multiplicity adjust-
ments are needed due to estimating effects on multiple subgroups, at multiple points in time, or 
across multiple treatment groups. 

Finally, the R code that implements the power estimation method in Section 3 (see Ap-
pendix B) only allows a user to estimate power for a specified sample size and for specified 
MDESs. Another next step will be to develop code that allows users to enter a desired level of 
power and then return either a sample size or MDESs. 
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Figure 1 

Individual Power, by Number of Outcomes, Adjustment Procedure, Proportion of 
Outcomes with Effects, and Pairwise Correlations Between Test Statistics: 20 Sites of 50 

Individuals Each, R2 = 0.5, and MDES = 0.125 for All Outcomes on Which There Are 
Effects 

(a) Correlations Between Test Statistics = 0.2 

 

 (b) Correlations Between Test Statistics = 0.8 
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Figure 2 

Individual Power, by Number of Outcomes, Adjustment Procedure, Proportion of 
Outcomes with Effects, and Pairwise Correlations Between Test Statistics: 20 Sites of 50 

Individuals Each, R2 = 0.1, and MDES = 0.125 for All Outcomes on Which There Are 
Effects 

(a) Correlations Between Test Statistics = 0.2 

 

(b) Correlations Between Test Statistics = 0.8 
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Figure 3 

1-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, and 
Pairwise Correlations Between Test Statistics: Three Outcomes, 20 Sites of 50 Individuals 

Each, R2 = 0.5, and MDES = 0.125 for All Outcomes on Which There Are Effects 
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Figure 4 

1-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, and 
Pairwise Correlations Between Test Statistics: Six Outcomes, 20 Sites of 50 Individuals 

Each, R2 = 0.5, and MDES = 0.125 for All Outcomes on Which There Are Effects 
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Figure 5 

1/3-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, and 
Pairwise Correlations Between Test Statistics: Six Outcomes, 20 Sites of 50 Individuals 

Each, R2 = 0.5, and MDES = 0.125 for All Outcomes on Which There Are Effects 
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Figure 6 

2/3-Minimal Power, by Adjustment Procedure, Proportion of Outcomes with Effects, and 
Pairwise Correlations Between Test Statistics: Six Outcomes, 20 Sites of 50 Individuals 

Each, R2 = 0.5, and MDES = 0.125 for All Outcomes on Which There Are Effects 
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Figure 7 

Complete Power, by Number of Outcomes and Pairwise Correlations Between Test 
Statistics: 20 Sites of 50 Individuals Each, R2 = 0.5, and MDES = 0.125 for All Outcomes on 

Which There Are Effects 

 



Appendix A 

Descriptions of the Bonferroni, Holm, Westfall-Young 
Single-Step, Westfall-Young Step-Down, and 

Benjamini-Hochberg Multiple Testing Procedures (MTPs) 
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Bonferroni-Class MTPs That Control the  
Familywise Error Rate (FWER) 
The Bonferroni MTP (Dunn, 1959, 1961) provides strong control of the FWER at level 𝛼𝛼 by 
setting the significance level for each of 𝑀𝑀 individual tests to 𝛼𝛼/𝑀𝑀. However, for ease of 
presentation, researchers typically hold the significance level at the FWER level and multiply 
raw p-values by 𝑀𝑀 (but truncating them at 1). Clearly, with this MTP, adjustments increase 
proportional to the number of hypothesis tests. Because the Bonferroni procedure adjusts the p-
value for each test independently, it is referred to as a “single-step” procedure. The shorthand 
BF-SS is used to refer to the Bonferroni MTP in the remainder of this appendix, where “SS” is a 
reminder that it is a single-step MTP. The Bonferroni-adjusted p-value can be written as  

 𝑝𝑝�𝑗𝑗𝐵𝐵𝐵𝐵−𝑆𝑆𝑆𝑆 = min {𝑀𝑀𝑝𝑝𝑗𝑗, 1} for 𝑗𝑗 = 1, … ,𝑀𝑀, (A.1) 

where 𝑝𝑝𝑗𝑗 is the raw (unadjusted) p-value for the 𝑗𝑗𝑡𝑡ℎ test of 𝑀𝑀 tests. 

The Holm procedure (Holm, 1979) improves on the Bonferroni procedure with a step-
wise approach. This procedure orders raw p-values from smallest to largest, such that 𝑝𝑝𝑟𝑟1 ≤
𝑝𝑝𝑟𝑟2 ≤ ⋯ ≤ 𝑝𝑝𝑟𝑟𝑟𝑟. The corresponding null hypotheses are then 𝐻𝐻𝑟𝑟1,𝐻𝐻𝑟𝑟2, … ,𝐻𝐻𝑟𝑟𝑟𝑟. (The r sub-
scripts here indicate that the p-values are ranked by their value.) The Holm procedure then 
rejects 𝐻𝐻𝑟𝑟𝑟𝑟 if and only if 𝑝𝑝𝑟𝑟𝑟𝑟 ≤ 𝛼𝛼/(𝑀𝑀 − 𝑗𝑗 + 1) for 𝑗𝑗 = 1, … ,𝑀𝑀. To frame the procedure in 
terms of p-value adjustments, as we did for Bonferroni, we multiply the smallest p-value by 𝑀𝑀, 
the second smallest p-value by M-1, and so on, but we also enforce that each adjusted p-value is 
greater than or equal to the previous adjusted p-value and that it is not greater than one. Using 
the shorthand HO-SD for Holm, where “SD” notes it is a step-down procedure, the adjusted p-
value for this MTP is given by 

   𝑝𝑝�𝑟𝑟𝑟𝑟𝐻𝐻𝐻𝐻−𝑆𝑆𝑆𝑆 = min�𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟, 1� for 𝑗𝑗 = 1 
               =  min {max�𝑝𝑝�𝑟𝑟(𝑗𝑗−1)

𝐻𝐻𝐻𝐻−𝑆𝑆𝑆𝑆, (𝑀𝑀 − 𝑗𝑗 + 1)𝑝𝑝𝑟𝑟𝑟𝑟� , 1} for 𝑗𝑗 = 2, … ,𝑀𝑀. 
(A.2) 

Note that all hypotheses rejected by Bonferroni will also be rejected by Holm, but it is 
possible that the Holm MTP will reject additional hypotheses.1 In general, stepwise procedures 
improve on single-step methods by allowing the possible rejection of less significant hypotheses 
in subsequent steps, depending on the null hypotheses already rejected in previous steps. 
Therefore, step-down MTPs can result in greater power than single-step MTPs.  

                                                 
1The Hochberg (1988) procedure is another stepwise enhancement of the Bonferroni procedure, but is a 

“step-up” procedure rather than step-down. It is not included in our comparisons. 
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Resampling-Based MTPs That Control the FWER 
Westfall and Young (1993) introduced both a single-step and a step-down procedure to control 
the FWER, both which take the correlations between test statistics into account. These proce-
dures rely on estimating the joint distribution of test statistics when the “complete null hypothe-
sis” is true. The complete null hypothesis (𝑯𝑯𝑯𝑯) is that 𝐸𝐸𝐸𝐸(𝑚𝑚) = 0 for all 𝑚𝑚, or, that there are 
no impacts on any of the M outcomes. The distribution of test statistics can be estimated by 
resampling one’s analysis dataset — using either permutation or bootstrapping. With permuta-
tion, for example, one randomly scrambles the treatment assignment indicator in the data, 
thereby breaking the relationship between treatment assignment and outcomes.2 Impacts are 
estimated with the scrambled treatment indicator and test statistics are computed. After repeat-
ing this process many times, like 10K, one has 10K test statistics for each of M outcomes that 
were computed with data in which no effects exist. Therefore, the resulting 10K x M matrix of 
test statistics provides an approximation of the test statistics one would obtain for 10K data 
samples under 𝑯𝑯𝑯𝑯.3 Because other than the treatment indicator, all other variables remain the 
same in the resampled data, the correlations between the test statistics across the M hypothesis 
tests are preserved.  

When using the single-step version of the Westfall Young MTP (denoted by WY-SS), 
the adjusted p-value for the 𝑚𝑚𝑡𝑡ℎ hypothesis test is the proportion of samples in which the 
maximum random variable test statistic (in absolute value) is greater than or equal to the actual 
test statistic from the original, unpermuted data (in absolute value) for the 𝑚𝑚𝑡𝑡ℎ hypothesis test. 
Thus, the Westfall-Young single step p-values are given by 

                                                 
2When data are blocked, as they are in the research design analyzed in this paper, the permutation can be 

carried out separately for each block.  
3The single-step and step-down Westfall Young MTPs always provide at least weak control of the FWER. 

In order for these procedures to provide strong control of the FWER, they require the assumption of subset 
pivotality (Ge, Dudoit, & Speed, 2003). The distribution of the unadjusted test statistics or p-values is said to 
have subset pivotality if for any subset of null hypotheses, the joint distribution of the test statistics or of the p-
values for the subset is identical to the distribution under the complete null. A consequence of this assumption 
is that the resampling of test statistics or p-values can be done under the complete null hypothesis rather than 
under the unknown partial hypothesis (Ge et al., 2003). 
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 𝑝𝑝�𝑚𝑚𝑊𝑊𝑊𝑊−𝑆𝑆𝑆𝑆 = Pr(𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑙𝑙≤𝑀𝑀|𝑇𝑇𝑙𝑙| ≥ |𝑡𝑡𝑚𝑚| |𝐻𝐻0𝐶𝐶) , 4 (A.3) 

where 𝑇𝑇𝑙𝑙 is the random-variable test statistic for the 𝑙𝑙𝑡𝑡ℎ test.  

The step-down version of the Westfall Young MTP (WY-SD) is more complicated. To 
carry out this version, one first orders the test statistics for each test such that 𝑡𝑡𝑠𝑠1 ≥ 𝑡𝑡𝑠𝑠2 ≥ ⋯ ≥
𝑡𝑡𝑠𝑠𝑠𝑠. Then one compares 𝑚𝑚𝑚𝑚𝑚𝑚 {|𝑇𝑇𝑠𝑠1|, … , |𝑇𝑇𝑠𝑠𝑚𝑚|} with |𝑡𝑡𝑠𝑠1 |, 𝑚𝑚𝑚𝑚𝑚𝑚 {|𝑇𝑇𝑠𝑠2|, … , |𝑇𝑇𝑠𝑠𝑚𝑚|} to |𝑡𝑡𝑠𝑠2 | and so 
on, until one compares 𝑚𝑚𝑚𝑚𝑚𝑚 {|𝑇𝑇𝑠𝑠𝑚𝑚|} with |𝑡𝑡𝑠𝑠𝑚𝑚|. Again monotonicity of adjusted p-values is 
enforced. Using notation to present what was just described, Westfall-Young step-down 
adjusted p-values are given by 

 𝑝𝑝�𝑠𝑠𝑖𝑖
𝑊𝑊𝑊𝑊−𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘=1,…,𝑖𝑖{Pr�𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙=𝑘𝑘,…,𝑚𝑚|𝑇𝑇𝑠𝑠𝑙𝑙| ≥ �𝑡𝑡𝑠𝑠𝑘𝑘� �𝐻𝐻0𝐶𝐶�} . 5 (A.4) 

An MTP That Controls the False Discovery Rate (FDR) 
The Benjamini-Hochberg MTP (Benjamini & Hochberg, 1995) is a “step-up” procedure that 
provides strong control of the FDR when the test statistics are independent or exhibit “positive 
regression dependency,”6 which means that no pairs of test statistics are negatively correlated 
(Benjamini & Yekutieli, 2001). In this procedure, raw p-values of the M tests are ranked from 
smallest to largest, as above, such that 𝑝𝑝𝑟𝑟1 ≤ 𝑝𝑝𝑟𝑟2 ≤ . .≤ 𝑝𝑝𝑟𝑟𝑟𝑟 . Then k is defined as the maxi-
                                                 

4Alternatively, one can convert test statistics to p-values to obtain the distribution of p-values under 𝑯𝑯𝑯𝑯. In 
this case, the adjusted p-values are given by 𝑝𝑝�𝑗𝑗𝑊𝑊𝑊𝑊−𝑆𝑆𝑆𝑆 = Pr�𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑙𝑙≤𝑀𝑀𝑃𝑃𝑙𝑙 ≤ 𝑝𝑝𝑗𝑗�𝐻𝐻0𝐶𝐶�. When the test statistics 
are identically distributed, as is the case in this paper, estimating the null distribution of p-values and estimating 
the null distribution of test statistics produce the same adjusted p-values. However, when the test statistics are 
not identically distributed (e.g., they have different degrees of freedom), not all of the tests contribute equally to 
the p-values when the maximum-test-statistics version of the MTP is used, which can lead to unbalanced 
adjustments (Beran, 1988; Westfall & Young, 1993). When the minimum p-value version is used and 
permutation is used to estimate the complete null distribution of p-values, the adjusted p-values can be sensitive 
to the number of permutations when the number of tests is large, and they tend to be more conservative than 
the maxT-adjusted p-values (Ge et al., 2003). 

5If one instead obtains the distribution of p-values under 𝐻𝐻0𝐶𝐶 , then one orders the raw p-values such that 
𝑝𝑝𝑟𝑟1 ≥ 𝑝𝑝𝑟𝑟2 ≥ ⋯ ≥ 𝑝𝑝𝑟𝑟𝑟𝑟 , then in this case, the adjusted p-values are given by 
 𝑝𝑝�𝑟𝑟𝑖𝑖
𝑊𝑊𝑊𝑊−𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘=1,…,𝑖𝑖{Pr�𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙=𝑘𝑘,…,𝑚𝑚𝑃𝑃𝑟𝑟𝑙𝑙 ≥ 𝑝𝑝𝑟𝑟𝑘𝑘  �𝐻𝐻0𝐶𝐶�}. 

6Benjamini and Yekutieli (2001) point out that the condition for positive dependency is general enough for 
most problems of practical interest. For other forms of dependency, they provide a modification of the original 
procedure. However, this modification comes with a substantial loss of power. Several studies using simulated 
data that violate Benjamini-Hochberg’s assumptions have shown that in practice, it still works quite well (e.g., 
Groppe, Urbach, & Kutas, 2011). Because adjustments for other forms of dependency are typically not needed, 
the What Works Clearinghouse uses the “original Benjamini-Hochberg procedure rather than its more 
conservative modified version as the default approach to correcting for multiple comparisons” (U.S. 
Department of Education, 2014).  
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mum j for which 𝑝𝑝𝑟𝑟𝑟𝑟 ≤
𝑗𝑗
𝑀𝑀
𝛼𝛼, and all null hypotheses 𝐻𝐻0𝑗𝑗 for 𝑗𝑗 = 1, … , 𝑘𝑘 are rejected. Adjusted 

Benjamini-Hochberg p-values are therefore given by 

 𝑝𝑝�𝑟𝑟𝑟𝑟𝐵𝐵𝐵𝐵−𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘=1,…,𝑗𝑗 �min (
𝑚𝑚
𝑘𝑘 𝑝𝑝𝑟𝑟𝑘𝑘 , 1)�. (A.5) 

Here, the notation BH-SU is used to indicate that this is a step-up MTP. The BH-SU 
MTP originally assumed independent test statistics (Benjamini & Hochberg, 1995), but Benja-
mini and Yekutieli (2001) show that it can typically be applied when the test statistics have 
positive dependency. As the What Works Clearinghouse guidelines point out, the condition for 
positive dependency makes BH-SU highly applicable in practice, and while a modification to 
the BH-SU MTP can be made for other forms of dependency, it is typically unnecessary and is 
more conservative (U.S. Department of Education, 2014). The What Works Clearinghouse uses 
the Benjaimin-Hochberg MTP whenever it makes corrections for multiplicity (U.S. Department 
of Education, 2014). 
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The function comp.rawt.SS is needed to implement the Westfall-Young single-step multiple 
testing procedure (MTP). It operates on one row of null test statistics. It compares 𝑚𝑚𝑚𝑚𝑥𝑥1≤𝑙𝑙≤𝑀𝑀𝑇𝑇𝑙𝑙 
with |𝑡𝑡𝑚𝑚| for all 𝑚𝑚. 

The parameters for this function are defined as follows: 

• abs.Zs.H0.1row = 1 row of tests statistics under the complete null. 

• abs.Zs.H1.1samp = raw test statistics for 1 sample. 

comp.rawt.SS <- function(abs.Zs.H0.1row, abs.Zs.H1.1samp) { 
  M<-length(abs.Zs.H0.1row) 
  maxt <- rep(NA, M) 
  for (m in 1:M) {maxt[m] <- max(abs.Zs.H0.1row) > abs.Zs.H1.1samp[m]} 
  return(as.integer(maxt)) 
} 

The function adjust.allsamps.WYSS is also needed to implement the Westfall-Young 
single-step MTP. It carries out the above function for all rows in the matrix of test statistics 
under the complete null and does so for all samples of raw test statistics under the alternative 
hypothesis. 

The parameters for this function are defined as follows: 

• snum = the number of samples for which test statistics under the alternative 
hypothesis are compared with the distribution (matrix) of test statistics under 
the complete null. 

• abs.Zs.H0 = a matrix of tests statistics under the complete null. 

• abs.Zs.H1 = a matrix of raw test statistics under the alternative. 

adjust.allsamps.WYSS<-function(snum,abs.Zs.H0,abs.Zs.H1) { 
  adjp.WY<-matrix(NA,snum,ncol(abs.Zs.H0)) 
  doWY<-for (s in 1:snum) { 
    ind.B<-t(apply(abs.Zs.H0, 1, comp.rawt.SS, abs.Zs.H1.1samp=abs.Zs.H1[s,])) 
    adjp.WY[s,]<-colMeans(ind.B) 
  } 
  return(adjp.WY) 
} 

The function comp.rawt.SD is needed to implement the Westfall-Young step-down 
MTP. It operates on each row of null test statistics. It first orders the test statistics such that 
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𝑡𝑡𝑠𝑠1 ≥ 𝑡𝑡𝑠𝑠2 ≥ ⋯ ≥ 𝑡𝑡𝑠𝑠𝑠𝑠, and then compares 𝑚𝑚𝑚𝑚𝑚𝑚|𝑇𝑇𝑠𝑠1|, … , |𝑇𝑇𝑠𝑠𝑚𝑚| with |𝑡𝑡𝑠𝑠1|, 𝑚𝑚𝑚𝑚𝑚𝑚|𝑇𝑇𝑠𝑠2|, … , |𝑇𝑇𝑠𝑠𝑚𝑚| 
with |𝑡𝑡𝑠𝑠2| and so on, until one compares 𝑚𝑚𝑚𝑚𝑚𝑚|𝑇𝑇𝑠𝑠𝑚𝑚| with 𝑡𝑡𝑠𝑠𝑚𝑚. 

The parameters for this function are defined as follows: 

• abs.Zs.H0.1row = 1 row of tests statistics under the complete null. 

• abs.Zs.H1.1samp = raw test statistics for 1 sample. 

• oo = the ordering of the raw test statistics for 1 sample. 

comp.rawt.SD <- function(abs.Zs.H0.1row, abs.Zs.H1.1samp, oo) { 
  M<-length(abs.Zs.H0.1row) 
  maxt <- rep(NA, M) 
  nullt.oo<-abs.Zs.H0.1row[oo] 
  rawt.oo<-abs.Zs.H1.1samp[oo] 
  maxt[1] <- max(nullt.oo) > rawt.oo[1] 
  for (h in 2:M) {maxt[h] <- max(nullt.oo[-(1:(h-1))]) > rawt.oo[h]} 
  return(as.integer(maxt)) 
} 

The function adjust.allsamps.WYSD is also needed to implement the Westfall-
Young step-down MTP. It carries out the above function for all rows in the matrix of test 
statistics under the complete null and does so for all samples of raw test statistics under the 
alternative hypothesis. 

The parameters for this function are defined as follows:  

• snum = the number of samples for which test statistics under the alternative 
hypothesis are compared with the distribution (matrix) of test statistics under 
the complete null. 

• abs.Zs.H0 = a matrix of test statistics under the complete null. 

• abs.Zs.H1 = a matrix of raw test statistics under the alternative. 

• order.matrix = a matrix in which each row corresponds to the order of the test 
statistics for 1 sample. 

adjust.allsamps.WYSD<-function(snum,abs.Zs.H0,abs.Zs.H1,order.matrix) { 
  cl <- makeCluster(ncl) 
  registerDoParallel(cl) 
  clusterExport(cl=cl, list("comp.rawt.SD")) 
  M<-ncol(abs.Zs.H0) 
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  adjp.WY<-matrix(NA,snum,M) 
 
  doWY <- foreach(s=1:snum, .combine=rbind) %dopar% { 
    ind.B<-t(apply(abs.Zs.H0, 1, comp.rawt.SD, abs.Zs.H1.1samp=abs.Zs.H1[s,], 
oo=order.matrix[s,])) 
    pi.p.m <- colMeans(ind.B)  
  # enforcing monotonicity 
    adjp.minp <- numeric(M) 
    adjp.minp[1] <- pi.p.m[1] 
    for (h in 2:M) {adjp.minp[h] <- max(pi.p.m[h], adjp.minp[h-1])} 
    adjp.WY[s,] <- adjp.minp[order.matrix[s,]] 
  } 
  return(doWY) 
  stopCluster(cl) 
} 

The function t.mean.H1 computes the means of the test statistics under the joint alter-
native hypothesis. Recall that 𝑡𝑡(𝑚𝑚) has a 𝑡𝑡-distribution with mean 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚)/𝑄𝑄(𝑚𝑚), where 

𝑄𝑄(𝑚𝑚) = �
(1 − 𝑅𝑅2(𝑚𝑚))
𝑝𝑝(1 − 𝑝𝑝)𝐽𝐽𝑛𝑛𝑗𝑗

. 

The parameters for this function are defined as follows: 

• MDES = a vector of length M corresponding to the minimum detectable ef-
fect sizes (MDESs) for the M outcomes. 

• J = the number of blocks. 

• n.j = the harmonic mean of the number of units per block. 

• R2 = a vector of length M corresponding to the R2’s for the M outcomes. 

• Tbar = the proportion of units assigned to treatment within each block. 

t.mean.H1<-function(MDES,J,n.j,R2,Tbar) { MDES * sqrt(Tbar*(1-Tbar)*J*n.j) / sqrt(1-R2) } 

Finally, the function est.power.mult estimates power for all definitions and for all 
MTPs in this paper. The parameters for this function are defined as follows: 

• M = the number of hypothesis tests (number of outcomes). 
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• MDES = a vector of length M corresponding to the MDESs for the M out-
comes. 

• Tbar = the proportion of units assigned to treatment within each block. 

• alpha = the familywise error rate (FWER) 

• J = the number of blocks. 

• n.j = the harmonic mean of the number of units per block. 

• numcovar = the number of baseline covariates, not including block dummies. 

• R2 = a vector of length M corresponding to the R2’s for the M outcomes. 

• sigma = the MxM correlation matrix for the test statistics. 

• tnum = the number of test statistics to generate, and also the number of per-
mutations for WY. It has a default of 10,000. 

• snum = the number of samples used to estimate WY. It has a default of 
1,000. 

• ncl = the number of clusters to use for parallel processing. It has a default of 
2. 

est.power.mult<-
function(M,MDES,Tbar,alpha,J,n.j,numcovar,R2,sigma,tnum=10000,snum=1000,ncl=2) { 
 
  require(MASS) 
  require(mvtnorm) 
  require(multtest) 
  require(doParallel) 
   
  # getting the mean of the test statistics under joint alternative hypothesis 
  shift.t<-t.mean.H1(MDES,J,n.j,R2,Tbar) 
   
  # creating a matrix of the means repeated in every row 
  shift.t.mat<-t(matrix(rep(shift.t,tnum),M,tnum))  
   
  # computing the degrees of freedom 
  t.df<- J*n.j - J - numcovar - 1 
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  # generating test statistics under joint null and alternative hypotheses, and getting absolute 
values 
  Zs.H0<-rmvt(tnum, sigma = sigma, df = t.df, delta = rep(0,M),type = c("shifted", "Kshir-
sagar"))  
  Zs.H1 <- Zs.H0 + shift.t.mat 
  abs.Zs.H0 <- abs(Zs.H0) 
  abs.Zs.H1 <- abs(Zs.H1) 
   
  # converting test statistics to p-values 
  pvals.H0<-2*pt(-abs(Zs.H0),df=t.df) 
  pvals.H1<-2*pt(-abs(Zs.H1),df=t.df)     
   
  # using mt.rawp2adjp function in multtest package to adust p-values for BF-SS, HO-SD and 
BH-SU 
  adjp<-apply(pvals.H1,1,mt.rawp2adjp,proc=c("Bonferroni","Holm","BH"),alpha=alpha) 
 
  # grabbing p-values from information returned in object adjp 
  grab.pval<-function(...,proc) {return(...$adjp[order(...$index),proc])} 
  rawp<-do.call(rbind,lapply(adjp,grab.pval,proc="rawp")) 
  adjp.BF<-do.call(rbind,lapply(adjp,grab.pval,proc="Bonferroni")) 
  adjp.HO<-do.call(rbind,lapply(adjp,grab.pval,proc="Holm")) 
  adjp.BH<-do.call(rbind,lapply(adjp,grab.pval,proc="BH")) 
   
  # each row of oo.all is the order of each row of absolute value test statistics 
  order.matrix<-t(apply(abs.Zs.H1,1,order,decreasing=TRUE)) 
   
  # using functions above to adjust p-values with WY-SS and WY-SD 
  adjp.SS<-adjust.allsamps.WYSS(snum,abs.Zs.H0,abs.Zs.H1) 
  adjp.WY<-adjust.allsamps.WYSD(snum,abs.Zs.H0,abs.Zs.H1,order.matrix) 
 
  # creating list of raw p-values and all adjusted p-values 
  adjp.all<-list(rawp,adjp.BF,adjp.HO,adjp.BH,adjp.SS,adjp.WY) 
   
  # for each matrix in adjp.all, for all entries, determining if null is rejected 
  reject<-function(x) {as.matrix(1*(x<alpha))} 
  reject.all<-lapply(adjp.all,reject) 
 
  # determining how many rejections among tests that are truly false 
  gt.alpha<-function(x) {apply(as.matrix(x[,MDES>0]),1,sum)} 
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  gt.allpha.all<-lapply(reject.all,gt.alpha) 
 
  # computing individual power   
   power.ind.fun<-function(x) {apply(x,2,mean)} 
   power.ind.all<-lapply(reject.all,power.ind.fun) 
   power.ind.all.mat<-do.call(rbind,power.ind.all) 
 
  # d-mininmal powers powers for all MTPs (including complete power when m=M) 
  power.min.fun <- function(x,M) { 
    power.min<-numeric(M) 
    cnt<-0 
    for (m in 1:M) { 
      power.min[m]<-mean(x>cnt) 
      cnt<-cnt+1 
    } 
    return(power.min) 
    } 
  power.min<-lapply(gt.allpha.all,power.min.fun,M=M) 
  power.min.mat<-do.call(rbind,power.min) 
 
  # for complete power, grab results for raw p-values 
  power.cmp<-rep(power.min.mat[1,M],length(power.min))  
   
  # put everything together and label 
  all.power.results<-cbind(power.ind.all.mat,power.min.mat[,-M],power.cmp) 
  mean.ind.power <- apply(as.matrix(all.power.results[,1:M][,MDES>0]),1,mean) 
  all.power.results<-cbind(mean.ind.power,all.power.results) 
  colnames(all.power.results)<-c("avg indiv",paste0("indiv",1:M),paste0("min",1:(M-
1)),"complete") 
  rownames(all.power.results)<-c("rawp","BF","HO","BH","WY-SS","WY-SD") 
  return(all.power.results) 
} 

Here is an example.   

ncl<-2 
M<-3 
sigma<-matrix(rep(0.5,M*M),nrow=M,ncol=M) 
diag(sigma)<-1 
MDES<-c(rep(0.125,M)) 
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est.power.mult(MDES=MDES,M=M,Tbar=0.5,alpha=0.05,J=20,n.j=50,numcovar=1,R2=0.5,s
igma=sigma,tnum=10000,snum=3,ncl=ncl) 

 

##       avg indiv indiv1 indiv2 indiv3   min1   min2 complete 
## rawp  0.7971000 0.7976 0.7985 0.7952 0.9463 0.8370    0.608 
## BF    0.6577333 0.6572 0.6587 0.6573 0.8699 0.6842    0.608 
## HO    0.7304333 0.7312 0.7325 0.7276 0.8699 0.7346    0.608 
## BH    0.7601667 0.7615 0.7619 0.7571 0.8836 0.7889    0.608 
## WY-SS 0.6450000 0.6340 0.6600 0.6410 0.8640 0.6620    0.608 
## WY-SD 0.7200000 0.7180 0.7210 0.7210 0.8640 0.7210    0.608 
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PowerUp! Paper
Power Estimates Estimates

Level 1 R2

0 0.287 0.285
0.2 0.346 0.344
0.8 0.878 0.877

Table C.1

Comparing Power Estimates with Those Obtained 
 by PowerUp!: One Outcome with MDES = 0.125, 

20 Blocks of Size 100, and Varying R2

SOURCE: PowerUp! estimates were generated using PowerUp! 
(Dong, 2013, Table RBD2-c). 
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Tests and true null hypotheses None BF HO BH None BF HO BH

80% of tests with true null
Number of tests

5 0.80 0.59 0.59 0.55 0.80 0.59 0.59 0.58
10 0.80 0.50 0.50 0.55 0.80 0.49 0.50 0.55
20 0.80 0.41 0.42 0.55 0.80 0.41 0.42 0.52

50% of tests with true null
Number of tests

5 0.80 0.59 0.61 0.67 0.80 0.59 0.61 0.66
10 0.80 0.50 0.53 0.67 0.80 0.49 0.53 0.67
20 0.80 0.41 0.44 0.67 0.80 0.41 0.44 0.66

20% of tests with true null
Number of tests

5 0.80 0.59 0.66 0.74 0.80 0.59 0.66 0.74
10 0.80 0.50 0.57 0.74 0.80 0.49 0.56 0.74
20 0.80 0.41 0.47 0.74 0.80 0.41 0.46 0.74

MTP Used MTP Used

Table C.2

Comparing Power Estimates Obtained Using Power Estimation Methodology in 

 and Proportions of Tests That Are False

Schochet (2008) Method in Section 3

Section 3 with Power Estimates in Schochet (2008) for One Site with 2,000 
Individuals, Correlations 0, MDES = 0.125, and Varying Numbers of Tests

SOURCE: Schochet (2008, Table B.4).



 

  

MTP Used and Section 3 Section 3 Section 3 Section 3 Section 3
Correlations Method Simulation Method Simulation Method Simulation Method Simulation Method Simulation

No adjustment
Correlations between tests

0 0.798 0.796 1.000 1.000 0.999 0.998 0.899 0.899 0.260 0.256
0.2 0.798 0.800 0.998 0.999 0.985 0.987 0.849 0.855 0.349 0.341
0.5 0.798 0.795 0.982 0.982 0.946 0.944 0.809 0.805 0.471 0.487
0.8 0.798 0.796 0.934 0.932 0.889 0.889 0.792 0.783 0.613 0.615

Bonferroni
Correlations between tests

0 0.561 0.556 0.992 0.995 0.939 0.932 0.468 0.450 0.260 0.256
0.2 0.561 0.563 0.966 0.968 0.868 0.873 0.483 0.492 0.349 0.341
0.5 0.561 0.557 0.896 0.882 0.775 0.775 0.505 0.509 0.471 0.487
0.8 0.561 0.558 0.780 0.773 0.684 0.684 0.527 0.527 0.613 0.615

Holm
Correlations between tests

0 0.679 0.674 0.992 0.995 0.952 0.944 0.651 0.642 0.260 0.256
0.2 0.672 0.675 0.966 0.968 0.888 0.888 0.627 0.643 0.349 0.341
0.5 0.663 0.662 0.896 0.882 0.797 0.797 0.619 0.617 0.471 0.487
0.8 0.652 0.647 0.780 0.773 0.706 0.705 0.620 0.614 0.613 0.615

Table C.3

Comparing Power Estimates Obtained Using Power Estimation Methodology in Section 3 with Power Estimates 
Obtained by Monte Carlo Simulation for Six Tests Each with MDES = 0.125, 20 Sites Each with 100 Individuals, 

and 2,000 Samples Each with 10,000 Permutations

Individual 1-minimal 1/3-minimal 2/3-minimal Complete

(continued)
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MTP Used and Section 3 Section 3 Section 3 Section 3 Section 3
Correlations Method Simulation Method Simulation Method Simulation Method Simulation Method Simulation

Benjamini-Hochberg
Correlations between tests

0 0.769 0.767 0.996 0.998 0.984 0.984 0.833 0.828 0.260 0.256
0.2 0.758 0.763 0.975 0.978 0.941 0.949 0.783 0.796 0.349 0.341
0.5 0.745 0.741 0.913 0.902 0.869 0.866 0.752 0.745 0.471 0.487
0.8 0.739 0.731 0.816 0.805 0.792 0.779 0.741 0.736 0.613 0.615

Westfall-Young
Correlations between tests

0 0.684 0.676 0.992 0.995 0.953 0.945 0.667 0.646 0.260 0.256
0.2 0.670 0.680 0.960 0.971 0.892 0.892 0.643 0.649 0.349 0.341
0.5 0.674 0.679 0.905 0.894 0.820 0.821 0.632 0.635 0.471 0.487
0.8 0.687 0.704 0.832 0.837 0.759 0.768 0.657 0.680 0.613 0.615

Table C.3 (continued)

Individual 1-minimal 1/3-minimal 2/3-minimal Complete
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for mounting rigorous, large-scale, real-world tests of new and existing policies and programs. 
Its projects are a mix of demonstrations (field tests of promising new program approaches) and 
evaluations of ongoing government and community initiatives. MDRC’s staff bring an unusual 
combination of research and organizational experience to their work, providing expertise on the 
latest in qualitative and quantitative methods and on program design, development, implementa-
tion, and management. MDRC seeks to learn not just whether a program is effective but also 
how and why the program’s effects occur. In addition, it tries to place each project’s findings in 
the broader context of related research — in order to build knowledge about what works across 
the social and education policy fields. MDRC’s findings, lessons, and best practices are proac-
tively shared with a broad audience in the policy and practitioner community as well as with the 
general public and the media. 

Over the years, MDRC has brought its unique approach to an ever-growing range of policy are-
as and target populations. Once known primarily for evaluations of state welfare-to-work pro-
grams, today MDRC is also studying public school reforms, employment programs for ex-
offenders and people with disabilities, and programs to help low-income students succeed in 
college. MDRC’s projects are organized into five areas: 

• Promoting Family Well-Being and Children’s Development 

• Improving Public Education 

• Raising Academic Achievement and Persistence in College 

• Supporting Low-Wage Workers and Communities 

• Overcoming Barriers to Employment 

Working in almost every state, all of the nation’s largest cities, and Canada and the United 
Kingdom, MDRC conducts its projects in partnership with national, state, and local govern-
ments, public school systems, community organizations, and numerous private philanthropies.  
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