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Abstract

Our paper explores the possibility of randomly assigning groups (or “ clusters’) of
individuals to a program or a control group in order to estimate the impacts of
programs designed to affect whole groups. This cluster assignment approach maintains
the primary strength of random assignment—the provision of unbiased impact
estimates—but has less statistical power than random assignment of individuals, which
usually is not possible for programs focused on whole groups. To explore the statistical
implications of cluster assignment we: (1) outline the issues involved, (2) present an
analytic framework for studying these issues, and (3) apply this framework to assess the
potential for using the approach to evaluate education programs targeted on whole
schools. Our findings suggest that cluster assignment of schools holds some promise for
estimating the impacts of education programs when it is possible to control for the
average performance of past student cohorts or the past performance of individual
students.

The Evaluation Challenge

Over the past several decades there has been considerable experience with randomized
experiments to measure the impacts of social programs (Greenberg and Robins 1986). At the heart of this
approach is the random assignment of individuals to a program group, which is supposed to receive
program services, or a control group, which is not supposed to receive these services. Only chance
determines who is and is not selected to receive services, and each eligible applicant has the same chance
of being selected.™

This process creates program and control groups with no systematic pre-existing differences—the
expected values of all background characteristics, whether measured or not, are the same for both groups.
Although in small samples these characteristics may differ by chance due to random sampling error, the
margin for error decreases as sample size increases. Hence, the control group experience provides an
unbiased estimate of what the program group experience would have been without the program. The
difference between these two experiences therefore represents an internally valid estimate of the program
impact—what it caused to happen. No other methodology provides the same level of internal validity for
program impact estimates (Hollister and Hill 1995).

However, some programs are designed to affect whole groups at once, not separate individuals.
For example, school reform initiatives are intended to affect whole schools, comprehensive community
initiatives are designed to affect whole communities and health education programs are often targeted on
whole geographic areas (Lasoff et al. 1994; Connell et a. 1995; and Murray et al. 1994). For these
programs it usually is not possible to randomly assign individuals to a program or control group. If a
school, a community, or a geographic areais selected for a program, then everyone within the group is
potentially affected by the program.

However, it might be possible to randomly assign whole groups or “clusters’. For example, one
could randomly select schools for a new education program from among those eligible to participate. The
schools not chosen would provide avalid control group because their expected background characteristics
would be the same as those for the schools chosen. However, randomly assigning whole schools will
produce a smaller effective sample than randomly assigning individual children from these schools.
Reducing the effective sample size, in turn, will reduce the statistical power of program impact estimates.

Therefore, random assignment of clusters (“cluster assignment”) can produce impact estimates
that are internally valid but may have limited statistical power. As described below, the extent to which
clustering reduces statistical power depends on the composition of the clusters involved. This, in turn,

" More complex designs randomly assign sample members to different treatment groups or a control
group (e.g. Freedman and Friedlander 1995).



depends on how clusters are defined. Cluster assignment may therefore produce adequate statistical power
for some purposes but not for others.

Our paper examines the statistical power of cluster assignment empirically. We first outline the
statistical issues involved and present an analytic framework for studying them. We then use this
framework to assess one potential application of cluster assignment—estimating the impacts of education
initiatives. Our findings suggest that cluster assignment holds some promise for this application when it is
possible to control for the average performance of past student cohorts or the past performance of
individual students. The paper concludes by considering the generalizability of our findings and by
exploring several problems that can arise when cluster assignment is used in practice.

Statistical 1ssues

Consider the following situation. A random assignment study takes place in J sites (schools,
communities, geographic areas, etc.), each containing n sample members (students, residents, etc.). Thus,
the sample for the study consists of nJ individuals. For simplicity assume that half the sample is assigned
to a program group and half to a control group, although our argument holds for any program/control
mix. There are three main ways to make this assignment randomly:

» Blocked random assignment would randomly assign half the individuals from each site to the
program and half to the control group.

» Cluster random assignment would randomly assign half the sites to the program and half to the
control group.

» Simple random assignment would randomly assign half of all individuals to the program and half to
the control group, ignoring their sites.

In each case, the difference between the mean outcome for the program group and that for the
control group isavalid estimator of the program impact, because its expected value equals the true
impact. The main difference in the statistical properties of the three approachesis their statistical power.?
These differences depend on the extent to which individuals vary within sites and the extent to which sites
differ, on average, from each other. Consider the following two extreme cases.

» All variation is between sites. If the outcome level is the same for all individualsin asite, but mean
outcomes vary across sites, then blocked assignment will have no random sampling error. By
ensuring that the program and control groups represent each site in the same proportion, blocking
will ensure that the groups are identical, regardless of who is selected from each site. In contrast,
random sampling error for cluster assignment will be at its maximum, because program and control
group differences will depend entirely on which sites are chosen for each group. Random sampling
error for simple random assignment will lie between that for cluster assignment and blocked
assignment.

» All variation iswithin sites. If the mean outcome is the same for each site, but outcomes vary across
individuals, then cluster assignment will only reflect sampling error due to who is selected from each

2 2These approaches have two other differences that are important to note but lie outside the scope of the
present paper. One difference represents a limitation of cluster assignment; the other represents an
advantage.

The limitation stems from the fact that cluster assignment cannot produce separate experimental impact
estimates for each site (cluster), whereas blocked assignment can do so. However, thisissue is not
germane to the present discussion about situations where blocked assignment is not possible.

The advantage of cluster assignment stems from its ability to capture program “macro-effects’. Macro-
effects (Garfinkel et. al 1992 and Harris 1985) represent changes in the environment at a site caused by a
program that influence outcomes for both control group members and program group members. Hence, by
comparing outcomes for these two groups, blocked random assignment will miss these effects. To date,
however, there is very little evidence about the existence of such macro-effects.



site, and it thus will be equivalent to simple random assignment. Blocked assignment also will be
equivalent to simple random assignment because there is no margin for blocking by site to reduce
sampling error.

In practice there usually is variation within and between sites. Hence, blocking by site will reduce
random sampling error and clustering by site will increase it. Therefore, cluster assignment will have the
least statistical power for any given total sample size, nJ.

As noted above, however, for programs that affect whole groups, it usually is not possible to
randomly assign individual sample members. Hence, neither blocked random assignment nor ssmple
random assignment is feasible; cluster assignment is the only option available. Thusit isimportant to find
away to assess the statistical power of this approach. As afirst step toward this end, we restate the
program and control group difference of means as the following regression with between-site and within-
site error components.

Y, =a + BB, te; +e; 1)
Where
Yij = the outcome for individua i in sitej,
a = the mean outcome for the control population,
Bo=  thetrue program impact,
Pj=  onefor individuas subject to the program and zero for others,
g = the error component for site j, which is independently and identically

distributed with mean zero and variancet?,

€j = theerror component for individual i from sitej, which isindependently and
identically distributed with mean zero and variance (1.

The coefficient, By, is the difference between the mean of outcome Y for persons subject to the
program and the mean of Y for those not subject to it (the true program impact). The sample-based
estimate of By is the program and control group difference of means, b, Random sampling error has two

components: g, to represent site-specific differences in mean outcomes, and €;, to represent individual
differences in outcomes within sites. The variance of the site-specific error component is represented by t 2
and the variance of the individual-specific error component is represented by S%

The expected value of the impact estimator, b, equals the true program impact, B,. The standard
error of the impact estimator for cluster assignment is (Raudenbush 1997):

/4t 2 4s?
SE(bo)cluster = T+ nJ (2)

2
This standard error has a component due to between-site sampling error, 4tT , and a component due to

within-site sampling error,

4s 2
5

The preceding discussion assumes that a simple program and control group difference of meansis used
to estimate program impacts. However, most randomized experiments use a regression-adjusted difference
of means to reduce the standard error of impact estimates by controlling statistically for background
characteristics that are correlated with outcomes. Equation 3 specifies such a regression with a program
variable, P;j, an individual-level background characteristic or covariate, X;;, and two error components, €*;

and e*ij.



Y, =a +B,P, +BX; +€ +e; (3)

Note that X;; can be a group characteristic or an individual characteristic and impact regressions can

include any number or mix of these characteristics. Of particular value in this regard are measures of past

performance for the same individuals (their “pre-test” scores) or measures of average performance for
previous groups (or “cohorts’) from the same cluster. The true program impact is till By and the new
regression-adjusted impact estimator is by*. Once again, the expected value of the impact estimator,
E(bo*), equals the true impact, B.

Standard errors for regression-adjusted impact estimators represent generalizations of their
counterparts for difference of means estimators. For example, consider the following standard errors for

cluster assignment with a regression-adjusted impact estimator using a single group characteristic, X;, or a

single individual characteristics, X;;, asthe covariate (Raudenbush 1997).

For asingle group characteristic:

SE(bO*)cluster = [1+

For asingle individual characteristic:

1 (a7 47
SE(bO* *)cluster = |1+ +

nJ-4 J nJ

There are two major differences between Equations 4 and 5 for regression-adjusted impact
estimators and Equation 2 for a simple treatment and control group difference of means. The first

1 \/ 1
or. |1+
J-4 nJ-4

as J (the numbers of clusters) in Equation 4 and nJ (the total number of individuals) in Equation 5
increase.

difference involves the inflation factor \/ 1+

For example, with J equal to 10 (five program clusters and five control clusters) thisinflation
factor equals 1.08 in Equation 4. For J equal to 20 the inflation factor equals 1.03. Thus, for all but very
small numbers of clusters, the inflation factor equals roughly one. Likewise, for nJ equal to 100 (fifty
program individuals and fifty control individuals) the inflation factor is 1.005 in Equation 5 and for nJ
equal to 500 it is 1.001. Thus, even for small numbers of clusters the inflation factor for an individual
covariate has virtualy no effect on the standard error of the impact estimator.

A second, more important difference between the standard errors for difference of means
estimators and their regression-adjusted counterparts under cluster assignment involves the error

component variances (t?and $2,t% and S, or t ¥ and S%”). To the extent that a covariate “explains’
some of the variation in the original error components, the variance of the remaining unexplained error,
and thus the standard error of the program impact estimator, decreases accordingly.

(4)

©)

. This factor rapidly approaches one



A group covariate will have all of its effect on between-cluster error. It cannot explain within-

cluster error because it has no within-cluster variation. Hence, a group covariate can reduce t 2 but not S2.
An individual covariate can reduce both between-cluster and within-cluster error variance. However, it
might reduce between-cluster variance by lessthan would be possible for a group characteristic. Hence, it
isnot clear a priori whether a group characteristic or an individual characteristic will provide the most
effective covariate for estimating program impacts.

Therefore, when considering cluster assignment to measure the impacts of a program, the
following statistical issues should be addressed

» How does the outcome of interest vary between clusters and within clusters? In other words, what are
the values of t? and s%?

» Towhat extent can group characteristics and/or individual characteristics reduce these variance
components and thus reduce the standard error of program impact estimates?

» Giventhelikely size of the clusters of interest and the covariates available for a study, how many
clusters are required to provide enough statistical power to make the study worthwhile?®

Below weillustrate how to address these questions for studies of school-wide programs to improve student
performance on standardized tests.

Analysis Strategy

Our basic approach is to explore the statistical implications for cluster assignment of the variance
component structure of standardized test scores within and between elementary schools in one medium-
size city, Rochester, New Y ork. We do not actually compute program impact estimates because we do not
examine a specific program. Instead we infer what the statistical properties of a cluster assignment impact
estimator would be if it were applied to a situation like that of Rochester elementary schools.

Specifically, we use standardized test scores for individual students from 25 Rochester

elementary schools to compute the between-school variance, t2, and the within-school variance, S?,
separately by: grade (for third grade and sixth grade), subject (math and reading), year (1989, 1990,1991,
and 1992) and different “impact estimation models’ (covariate specifications).** Specific grades and
subjects are studied separately because the impacts of educational programs typically are reported by
grade. Findings for different years are reported separately to examine their stability over time. Findings
for different impact estimation models are reported separately to assess their ability increase the statistical
power of cluster assignment designs.

For each combination of grade, subject, year and model specification we estimate t >and S? and
use these estimates to project the “minimum detectable effect” and *“minimum detectable effect size” for
different cluster assignment samples. Intuitively, a minimum detectable effect or a minimum detectable
effect size isthe smallest effect that a particular research design has a “good chance” of detecting. The
smaller the minimum detectable effect or minimum detectable effect size is, the greater the statistical
power of the research design is. A minimum detectable effect is expressed in the original units of the
outcome measure (in our case, scale scores from a standardized test) whereas a minimum detectable effect

#Raudenbush (1997) provides a framework for jointly determining the optimal number and size of
clusters. Our examples take cluster-size (school-size) as given, but our approach can be generalized to
decisions about the number and size of clusters.

“There were 34 elementary schools in Rochester, all of which had athird grade, but only 25 of which had
asixth grade. In order to maintain the same sample of schools for our third-grade and sixth grade
analyses, we only report findings for the 25 schools that had both grades. Further analyses, not reported
here, indicate that third-grade findings for all 34 schools are similar to those for the 25 schools in our
sample.



size is expressed as a proportion of the standard deviation of the outcome measure (in our case, the sample
standard deviation of individual scale scores).>® Using these two related metrics we address the question:

“How many schools are needed to provide adequate statistical power for a cluster assignment
design intended to measure program impacts on student performance?’

The following 10 impact estimation models are examined.

Basic Approach
(with no covariates)

Mode 1: A program and control group difference of mean test scores

Cohort Approaches
(with group covariate/s only)

Model 2:  Controlling for the mean test score of different students who were in the same
grade in the previous year (Yj.1)

Mode 3:  Controlling for the mean test score of different students who were in the same
grade in the previous year and the year before that (Yj.. and Yj.o)

Model 4:  Controlling for the mean test score of different students who were in the same
grade two years earlier (Yj.o)

Mode 5:  Controlling for the mean test score of different students who were in the same
grade two and three years earlier (Y., and Yic.s)

Longitudinal Approaches
(with individual covariate/sonly)

Model 6:  Controlling for each individual student’s test score in the previous grade (Vijt1)
Model 7:  Controlling for each individual student’s test score two grades earlier (Vi)

Model 8:  Controlling for each student’s test score in each of the previous two grades (Vi
1 and Vi)

Combined Approaches
(with individual and group covariates)

Model 9:  Controlling for each individual student’s test score in the previous year (Yij.-1)
and the mean score of different students in the same grade a year earlier (Y;.1)

Model 10:  Controlling for each individual student’s test score two years prior (Vi) and
the mean score of different students in the same grade two years earlier (Yj.»)

Model 1, asimple treatment and control group difference of means, serves as our point of
departure. The other models are versions of Equation 3 with different measures of past student test scores
as covariates.

Models 2-5 use cohort data for each school/grade (cluster) to control for the mean test scores of
its past student cohorts. Hence, these models rely on group covariates to control for “school effects’.
Model 2 controls for the average performance of each school’s most recent past cohort (last year’s
students in the same grade). Model 3 controls for the average performance of each school’s two most
recent cohorts. These models could be used to estimate the impacts of a program during its first year of

**See Bloom (1995) for a discussion of minimum detectable effects and Cohen (1977, 1988) for a
discussion of effect size.



implementation. By comparing their projected statistical power one can assess the value of obtaining data
on two years versus one year of past school-level performance.

Models 4 and 5 “skip-over” the most recent past cohort (last year’'s students) and therefore could
be used to estimate the impacts of a program during its second year of implementation (when last year's
students could have been affected by the program). By comparing the statistical power of Models 4 and 5
to that for Models 2 and 3, it is possible to project the loss of power that will occur if one has to wait a
year before estimating the impacts of a program that is slow to startup. This comparison also illustrates
how statistical power will erode as one moves from impact estimates for the first year of program follow-
up to estimates for the second year.

Models 6, 7 and 8 use individual longitudinal data to control for each student’s own past test
scores. Hence, they rely on individual covariatesto control for “individual effects’. Model 6 controls for
each student’ s test score during the immediately preceding year and Model 7 controls for his or her own
score two years earlier. Model 8 controls for sample members' test scores in both of the past two years.
Hence, Models 6 and 8 can be used to estimate program impacts during the first year of program
implementation and Model 7 can be used for the second year, in cases where test scores for a previous
year may have been affected by an ongoing program.

Models 9 and 10 complete our analysis by representing combinations of both individual and
group covariates. Model 9 lags past individual performance and the performance of previous cohorts by
one year, and hence, could be used to estimate impacts in the first year of program implementation. Model
10 lags past individual and group performance by two years and hence, could be used to estimate impacts
in year two of program implementation.

As indicated above, we do not actually compute program impacts with each model. Instead, we
use the results of standardized tests in Rochester to examine the error component structure of each model
and thereby infer what its statistical properties would be if it were used to estimate program impactsin a
similar environment.

For each impact estimation model, year, subject and grade, t ? and S? were computed using
variance components analysis. For Model 1 the variance components were computed directly from
individual test scores. For Models 2 through 10 they were computed in three steps: (1) individual scores
were regressed on the appropriate group or individual covariate/s; (2) residuals were computed for this
regression, and (3) the SAS VARCOMP procedure was used to estimate the variance components of the
residuals (SAS Institute 1989).%°

Data and Sample

Our outcome data were obtained from the Rochester, New Y ork school district. They comprise
individual scores on Pupil Evaluation Program (PEP) tests for math and reading, which are administered
each year to third-graders and sixth-graders throughout New Y ork State. Rochester scores were available
to usfor 1989, 1990, 1991 and 1992. The average number of third-graders per school in the sample each
year ranged from 29 to 121, with amean of 71. The average number of sixth-graders per school ranged
from 21 to 96, with a mean of 54.

The PEP test is “norm-referenced” not “criterion-referenced.” It does not translate into grade-
equivalents or any other absolute criterion. Hence, its results only have meaning relative to the
distribution of scores for areference group; they do not have meaning in terms of specific identifiable
knowledge, ability, or skills.

The reference group we use to interpret PEP test scoresis our analysis sample. Table 1
summarizes the distribution of individual PEP test scale scores for this sample by grade, subject and year.
Several points are important to note about these distributions. First note that although mean scores differ

SAS PROC MIXED combines the steps that we used into one procedure (SAS Institute 1997), but we
kept them separate to reflect the intuition of the process.



by grade and subject (because they represent different subject matter), they do not differ much over time
(suggesting that different versions of the same test were similar and that average student performance did
not change much in Rochester during the four-year period we examined).

Second, note that the standard deviation of individual scoresis about 10 or 11 points for all
subjects, grades and years examined. Hence, as explained later, to convert minimum detectable effects (in
scale scores) to minimum detectabl e effect sizes (as a proportion of the standard deviation) we divide the
former by roughly 10 or 11.

Third, note how the distribution of scale scores translates into a percentile distribution. For each
subject, grade and year, the difference in scale scores between the 25" and 75" percentilesis 14 to 17
points. In other words, a percentile difference of 50 points reflects a scale score difference of 14 to 17
points. Thisimplies that each one-point difference in scale scores represents a three-percentile
difference. This relationship plays an important role in our interpretation of minimum detectable effects
reported later.

Two different samples are used for our analysis: the full sasmple and a longitudinal sub-sample.
The full sampleis used to examine the cohort Models 2-5. It contains between 1,724 and 1,815 third-
graders and between 1,229 and 1,475 sixth-graders each year. A sub-sample of students with test scores
for multiple yearsis used to examine longitudinal approaches. Specifically, we focus on sixth-graders with
test scores for fourth, fifth and sixth grade and on third graders with test scores for first, second and third
grade. It was only possible to obtain these longitudinal data for third-graders or sixth-graders who took
PEP testsin 1991 and 1992."

In the discussion which follows, we first present findings for the cohort approaches (Models 1 —
5) based on data for the full sample. We then present findings for the longitudinal approaches (Models 6 -
8) and combined approaches (Models 9 and 10) based on data for the longitudinal sub-sample. To
facilitate a direct comparison of the cohort approaches, the longitudinal approaches and the combined
approaches for the same individuals, we also present findings for the cohort approaches for the
longitudinal sub-sample.

Minimum Detectable Effects and Minimum Detectable
Effect Sizesfor the Cohort Approaches

By definition, the minimum detectable effect of a study is the smallest true effect that hasa W
percent chance of producing an impact estimate that is statistically significant at the Z level. For a one-tail
hypothesis test (to assess program-induced improvement, not just change) at the 0.05 level of statistical
significance (2), with 80 percent statistical power (W), the minimum detectable effect is 2.5 times the
standard error of an impact estimator.?® In other words:

MDE(b,) = 2.5SE(b,) (6)
Substituting Equation 2 into Equation 6 yields:
t? s?
MDE(b,) =5,/— +— 7
(b,) 7 (7)

As can be seen, that the minimum detectable effect for cluster assignment is:

""Scores for first, second, fourth and fifth grade were obtained from CAT, CT5 and DRP tests.
8B]oom 1995 illustrates that the minimum detectable in terms of the standard normal deviate is zo.o5 plus
the absol ute value of zy 5 for this case.



» inversely proportional to the square root of the total number of clusters, J;
» inversely but not proportionally related to the number of individuals per cluster, n; and

» directly but not proportionally related to the between-cluster and within-cluster variance components,
t?and s%

Minimum detectable effects are a simple way to express statistical power, but to interpret them
requires a basis for judging their policy relevance. From a benefit-cost perspective, one might ask whether
a proposed study could detect the smallest effect that would make a program “break even”. From a
political perspective, one might ask whether the study could detect the smallest effect that would be
deemed as “having made an important difference”. From a programmatic perspective, one might ask
whether the study could detect an effect that had a “reasonable chance of being achieved”. Which
perspective is applied, and what data are used to inform it will vary from application to application. But as
with any measure of statistical power, some such determination must be made in order to interpret it.

Table 2 presents minimum detectable effects for the cluster assignment of 10, 20, 30, 40 and 60

schools (half to a program group and half to a control group), given our estimates of t?and S? and
assuming a grade-size of 60 students-per school. Consider the mean findings in column five for Model 1.
For 10 schools (600 students), the minimum detectable effect would be 6.9 points; for 20 schools (1,200
students) it would be 4.9 points, for 30 schools (1,800 students) it would be 4.0 points, for 40 schools
(2,400 students) it would be 3.4 points and for 60 schools (3,600 students) it would be 2.8 points. The
situation improves considerably if we control for the performance of at least one recent cohort. For
example, under Model 2, the minimum detectable effect would be 4.3, 2.9, 2.3, 2.0, or 1.6 points for 10,
20, 30, 40, or 60 schools, respectively.

Because there is no absolute benchmark for interpreting a specific change in PEP test scores, it is
difficult to determine whether the minimum detectable effects for Models 2 through 5 would be adequate
for studying a particular educational initiative. One way to do so, however, isto compare this change to
the distribution of individual test scoresin Table 1.

As noted earlier, a 2- point difference in PEP scores represents a 6-percentile difference in the
distribution of individual scores. Thus, a minimum detectable effect of 2 points (in the range attainable
using 40 to 60 schools) is equivalent to raising the mean performance of program group members by 6
percentile points. For example, it would be equivalent to raising their performance from the 50" to the
56" percentile in the original sample distribution. It seems reasonable to expect amajor educational
initiative to produce an improvement of at least this magnitude in order for it to be deemed successful.
Hence, a minimum detectable effect in this range might be acceptable for an evaluation of a major
educational initiative.

To provide another perspective on the magnitudes of the findingsin Table 2 we transformed
them into minimum detectable effect sizes by dividing each by the average full-sample standard deviation
for the PEP scale scores for the subject and grade involved. These results are presented in Table 3.%

Measuring effect size in units of standard deviations is a common way to standardize impact
estimates from different studies in order to summarize and compare them. This approach is especially
useful for meta-analyses of treatment effectiveness studies which report impacts in different units and for
different types of outcomes (Glass, McGaw and Smith 1981).

Effect size is also acommon metric for discussions of statistical power in the behavioral sciences.
To provide guidance for researchers Cohen (1977, 1988) suggests that effect sizes around 0.20 be
considered small, those around, 0.50 be considered medium, and those above 0.80 be considered large.
These guidelines have been used by researchers in many fields for many years.

®For each subject and grade we used the mean of the standard deviations for 1989, 1990, 1991 and 1992.



Lipsey (1990) provides an empirical justification for Cohen’s effect-size standards based on the
distribution of 102 mean effect sizes obtained from 186 meta-analyses of 6,700 studies representing
800,000 sample members. The lower third of this distribution (small effects) ranged from 0.00 to 0.32; the
middle third (medium effects) ranged from 0.33 to 0.55; and the upper third (large effects) ranged from
0.56 to 1.20. The mgjority of meta-analysesin Lipsey’s (1990) summary represent educational research,
and the distribution of effect sizes is about the same for educational research and non-educational research
(Lipsey 1990, p. 54). Hence, these findings provide arelevant guide for judging the minimum detectable
effect sizesin Table 3.

As can be seen, if it is possible to control for the performance of at least one recent cohort from
each school (Models 2 — 5), the minimum detectable effect size for cluster assignment of 30 to 60 schools
(1,800 to 3,600 student, respectively) is about 0.20. This would be considered a small effect, both
according to Cohen’s (1977, 1988) guidelines and Lipsey’s (1990) empirical findings.

Corresponding Findings for the Longitudinal Approaches

Our analysis of longitudinal impact estimators focuses on the sub-sample of Rochester sixth-
graders and third-graders with individual test scores for three consecutive years. As noted above, this
information could only be obtained for the 1991 and 1992 samples and it was available for 85 to 90
percent of these sample members. %

For each sub-sample we computed t  and S for each impact estimation model. We then computed the
minimum detectable effects and minimum detectable effect sizesin Table 4. The first two columnsin the
table report minimum detectable effects measures in PEP test scores; the last two columns present
minimum detectable effect sizes computed as a proportion of the standard deviation of PEP test scores. All
estimates are for a cluster assignment design with atotal of 40 schools and 60 students per school, with
half of the schools randomly assigned to a program and half to a control group. The findings suggest that:

» Controlling for past average school performance or past individual student performance
markedly reduces the minimum detectable effect and minimum detectable effect size for all
but third grade math scores (discussed below).

» Controlling for more recent past performance reduces the minimum detectable effect and
minimum detectable effect size by more than controlling for less recent past performance.

» Controlling for two years of past performance reduces the minimum detectable effect and
minimum detectable effect size by slightly more than controlling for one year of past
performance.

» Controlling for past individual performance reduces the minimum detectable effect and
minimum detectable effect size by dlightly more than controlling for past school
performance, for al but third grade math scores (discussed below).

» Ingeneral, controlling for both past school performance and past individual performance
reduces the minimum detectable effect and minimum detectable effect size by more than
controlling for only one of these aternatives. ™

100pqr gixth-graders, the full samples sizes for 1991 math and reading and 1992 math and reading,
respectively are 1,313, 1,314, 1,475 and 1,468; their counterparts for the longitudinal sub-sample are
1,153, 1,153, 1,363 and 1,365. For third-graders, the corresponding full-sample sizes are 1,815, 1,806,
1,794 and 1,797 and the corresponding longitudinal sub-sample sizes are 1,545, 1,545, 1,754 and 1,754.
11 The most noticeable exception to this rule (for 1991 third-grade math scores) is probably due to
sampling error in the variance component estimates. Close examination of this finding indicates that
although the total individual error variance (t%+s?) was smaller for Model 9 than for Models 2 or 6, the
allocation of this total to each variance component was such that the corresponding minimum detectable
effect for Model 9 was dightly larger than that for Model 2.
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In general, the greatest increase in statistical power is produced by individual measures of recent past
test performance (Model 6). The minimum detectable effect for this approach ranged from about 1 to 2
scal e score points, which represents roughly 3 to 6 percentiles (for all but third-grade math scores, where
controlling for past school performance was far more effective). The corresponding minimum detectable
effect size ranged from 0.10 to 0.20. Hence, by controlling for recent individual test scoresit is possible
for cluster assignment with 40 schools and 60 students per school to detect relatively small improvements
in school performance.

The next greatest increase in statistical power was produced by measures of recent past school
performance, with a minimum detectable effect around 2 scale score points or 6 percentiles and a
minimum detectable effect size ranging from about 0.15 to 0.20. Findings for the other models also
suggest an ability to detect fairly small program impacts.

The one apparent anomaly in the findings, is that past individual-level performance (Models 6-8)
has very little effect on statistical power for estimating program impacts on third-grade math scores. This
result was obtained both for 1991 and 1992. One potential explanation for it is that third-grade math tasks
differ fundamentally from those for first and second grade. Hence, first and second grade math
performance may not provide strong predictors for third-grade performance.

Conclusions, Limitations and Further 1ssues

This paper was motivated by the need for arigorous way to estimate the impacts of programs
designed to affect whole groups. For such programsit usually is not possible to randomly assign
individuals to a program or control group. As an alternative, we explore the possibility of randomly
assigning groups or clusters. Although the statistical theory of cluster sampling has been known for many
years (Cochran 1963), the properties of cluster assignment for specific applications are not well known.
Thus to explore the feasibility of using this approach requires empirical analysis of its properties for
applications being considered.

To facilitate such analyses, we tried to do three things: (1) clarify the statistical issuesinvolved,
(2) provide an analytic framework for studying these issues, and (3) use the framework to assess one

potential application of cluster assignment¥4 evaluating educational programs targeted on whole schools.

Our empirical results suggest that cluster assignment of schools holds some promise when it is
possible to control for either the past performance of individual students (individual effects) or the average
performance of recent past student cohorts (school effects). These findings are quite robust. They hold for
two different grades (third-grade and sixth-grade), two different subjects (math and reading) and four
different years (1989, 1990, 1991 and 1992).

On balance, we find that controlling for individual effects improves statistical power by slightly
more than controlling for school effects. Controlling for more recent past performance improves statistical
power by slightly more than controlling for less recent past performance. Controlling for two years of past
performance improves statistical power by dightly more than controlling for one year of past performance.
But most importantly, all of these approaches improve statistical power substantially.

Consequently, we project that if a good measure of past individual or school performanceis
available, it might be possible to detect a 3 to 6 percentile improvement in average student performance
with cluster assignment of 40 schools and 60 students per school (2,400 students overall). Thisimplies an
effect size of roughly 0.10 to 0.20, which by most existing standards suggests adequate statistical power.

Nevertheless, our findings represent only one step towards a better understanding of the strengths
and limitations of cluster assignment. To explore this issue further, the following issues must be
considered.

Do our findings apply to other standardized tests? We replicated key portions of our analysis for
outcome measures based on individual scores from the California Achievement Test (CAT) in math
administered to Rochester fifth-graders during 1989, 1990, 1991 and 1992. These findings were
consistent with those reported for third-grade and sixth-grade PEP tests.
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Will our findings apply when different tests are used by schoolsin different years? Schools
often change the standardized test they use. Hence, the test used for current students might differ from
that used for past students. To examine the implications of this possibility, we analyzed current student
math performance controlling for the reading performance of previous cohorts, and vice versa. Our results
were quite similar to those presented above. Hence, our findings are not sensitive to how past cohort
performance is measured.

Can our findings apply to a study conducted in more than one city? Our findings reflect the
variance components of test scores for students and schools in one city. Hence, they indicate what would
happen if these schools were randomly assigned to a program group or control group. But more than one
city might be necessary to recruit enough eligible schools for an impact study. This could add a between-
city variance component to test scores. However, blocking schools by city would eliminate this extra
variance. For example, one might recruit eight schools from each of five cities (40 schools) and randomly
assign four schools from each city to the program and four to the control group. Doing so would remove
all city-specific differences between the program group and control group. Hence, this variance
component would not affect the statistical power of program impact estimates.

How sensitive is cluster assignment to contamination of the treatment? When individuals are
randomly assigned to a program, some may not participate and some of those assigned to the control
group may inadvertently receive program services.***? Consequently, the difference between program
services received by those assigned to the program and those assigned to the control group is diluted and
the measured program impact is attenuated.

When clusters are randomly assigned, these problems can be even more severe. If, for example,
in a twenty-school evaluation of areform, two of the ten “program schools’ fail to implement the reform,
and two of the “control schools’ develop a close dternative, one's ability to identify program impacts can
be lessened substantially. It is not possible to correct such a problem by eliminating the failed program
schools or the control schools that adopt a similar program, because doing so would compromise the
experimental research design. For those considering cluster assignment this means that stringent control
of the treatment is essential.

How sensitive is cluster assignment to experimental attrition? Attrition from a study, or failure
to collect follow-up data on some sample members, is potentially a more serious problem than
contamination of the treatment. Instead of diluting the treatment contrast, such attrition (also referred to
as “experimental mortality”) compromises the internal validity of the experimental design because
program group members and control group members for whom follow-up data are available may represent
non-random sub-samples of the original program and control groups. Thus, a decision by one school in a
multi-school study to stop providing data could seriously undermine the quality of a study and the
believahility of its results.

This problem could be offset somewhat by grouping clusters into blocks of two and randomly
assigning one cluster from each block to the program and one to the control group. In this case, if one
cluster dropped out of the study, the other cluster from its block could be dropped as well. This would
reduce the sample size of the study but would no bias its impact estimates.

How sensitive is cluster assignment to outliers? Another source of problems for cluster
assignment is the possibility that unusual circumstances will produce an aberration in the outcomes for a
whole cluster. In a study based on individual random assignment, a sample member may win the lottery or
go to prison. These rare events could have a strong effect on the outcome for an individual but they are

1212B] oom 1984 provides a correction for program group members who do not receive program services,
which he refersto as “no-shows’ in experimental research. Haynes and Dantes 1987 provide a similar
correction for this problem in clinical trials, which they refer to as “non-compliance’. Bloom et al. 1997
provide a corresponding correction for both no-shows and “ cross-overs’ (control group members who
receive program services).
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unlikely to markedly affect the overall mean outcome for program group members or control group
members. However, if a philanthropist decides to donate a large sum of money to a control school in an
educational experiment, this donation might affect the experience of alarge proportion of the sample at
once. Even though the standard error of impact estimates accounts for these random events, they could
make any single impact estimate unbelievable.

Will our findings apply to other school systems? Our findings represent the variance
components of elementary schools in Rochester, New Y ork between 1989 and 1992. To the extent that the
variance components of our sample schools are similar to those in other school systems, our findings will
apply elsewhere. To the extent that Rochester isidiosyncratic in this regard, our findings will not apply
elsewhere. The only way to answer this question is to replicate our analysis for other school systems.

Will our findings for schools apply to other types of clusters? The variance components of
clusters depend on how clusters are defined and the forces causing individuals to group together in them.
One likely determinant is the geographic scope of each cluster. For example, Census blocks (small
geographic units) are probably more homogeneous and differ more on average from each other than do
Census tracts (which comprise numerous Census blocks). Census tracts are probably more homogeneous
and differ more, on average, from each other than do municipalities (which comprise many Census
tracts). Thisreflects the way that people concentrate geographically. Hence, one cannot apply our findings
directly to comprehensive community initiatives, community health education programs or other
programs targeted on different types of clusters. Nevertheless, it is possible to use our analytic framework
to examine the statistical properties of cluster assignment for these applications.
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Tablel
Distribution of Individual PEP Test Scores

1989 1990 1991 1992
Third-Grade Math

Mean 44.3 41.5 44.6 46.0
Standard deviation 10.2 9.7 9.7 10.2
25" percentile 37 35 38 39
50" percentile 45 42 45 47
75" percentile 52 49 52 54
Third-Grade Reading

Mean 36.1 36.0 35.6 35.7
Standard deviation 10.8 10.8 11.3 11.1
25" percentile 29 29 28 28
50" percentile 37 36 36 37
75" percentile 44 44 45 44
Sixth-Grade Math

Mean 38.0 33.9 34.6 32.6
Standard Deviation 11.4 11.4 115 115
25" percentile 30 25 26 24
50" percentile 37 33 33 31
75" percentile 46 42 42 41
Sixth-Grade Reading

Mean 56.5 58.5 56.7 56.1
Standard deviation 115 115 11.8 12.1
25" percentile 51 52 51 49
50" percentile 59 61 58 57
75" percentile 65 67 66 65

NOTE: Sample sizesfor 1989, 1990, 1991 and 1992, respectively are: 1728, 1748, 1815, 1794 for third-
grade math; 1724, 1741, 1806, 1797 for third-grade reading; 1229, 1398, 1313, 1475 for sixth-grade
math; and 1229, 1398, 1314, 1468 for sixth-grade reading.
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Table2
Estimated Minimum Detectable Effects
for Cohort Approaches
(for thefull sample)

Third-Grade Sixth-Grade Mean
Math Reading Math Reading
Modé 1 (no covariates)
10 Schools 6.6 7.1 7.5 6.3 6.9
20 Schools 47 5.0 53 45 49
30 Schools 3.8 4.1 4.3 3.6 4.0
40 Schools 3.3 3.6 3.7 3.2 34
60 Schools 2.7 2.9 3.0 2.6 2.8
Model 2 (Y1)
10 Schools 3.6 47 49 3.9 4.3
20 Schools 2.4 3.2 3.3 2.6 2.9
30 Schools 2.0 2.6 2.7 2.1 2.3
40 Schools 17 2.2 2.3 1.8 2.0
60 Schools 14 1.8 19 15 16
Moded 3 (Yt—ln Yt-2)
10 Schools 3.7 35 47 4.3 4.0
20 Schools 2.4 2.3 3.0 2.8 2.6
30 Schools 19 1.8 2.4 2.2 2.1
40 Schools 16 15 2.1 19 1.8
60 Schools 1.3 1.3 17 15 14
Model 4 (Y+.,)
10 Schools 4.3 3.9 54 45 45
20 Schools 2.9 2.6 3.7 3.0 3.1
30 Schools 2.3 2.1 3.0 2.4 25
40 Schools 2.0 1.8 25 2.1 2.1
60 Schools 16 15 2.1 17 17
Mode 5 (Yt—2| Yt_3)
10 Schools 4.3 3.6 5.0 49 45
20 Schools 2.8 2.3 3.2 3.1 2.9
30 Schools 2.2 19 2.6 25 2.3
40 Schools 19 16 2.2 2.1 2.0
60 Schools 15 1.3 1.8 17 1.6

NOTE: Based on the mean values of t?and s for all years of available full-sample data for each mode!,
and assuming 60 students per school (approximately the average grade size for the full-sample).
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Table3
Estimated Minimum Detectable Effect Sizes
For Cohort Approaches
(for the full sample)*

Third-Grade Sixth-Grade Mean
Math Reading Math Reading
Modé 1 (no covariates)
10 schools 0.67 0.65 0.65 0.54 0.63
20 schools 0.47 0.46 0.46 0.38 0.44
30 schools 0.38 0.37 0.38 0.31 0.36
40 schools 0.33 0.32 0.33 0.27 0.31
60 schools 0.27 0.26 0.27 0.22 0.26
Model 2 (Yijt.1)
10 schools 0.37 0.43 0.43 0.33 0.39
20 schools 0.25 0.29 0.29 0.23 0.26
30 schools 0.20 0.23 0.23 0.18 0.21
40 schools 0.17 0.20 0.20 0.16 0.18
60 schools 0.14 0.16 0.16 0.13 0.15
Moded 3 (th_l, th_z)
10 schools 0.37 0.32 0.41 0.36 0.37
20 schools 0.24 0.21 0.26 0.23 0.24
30 schools 0.19 0.16 0.21 0.19 0.19
40 schools 0.16 0.14 0.18 0.16 0.16
60 schools 0.13 0.11 0.15 0.13 0.13
Model 4 (Yijt.2)
10 schools 0.43 0.35 0.47 0.38 0.41
20 schools 0.29 0.24 0.32 0.26 0.28
30 schools 0.24 0.19 0.26 0.21 0.22
40 schools 0.20 0.17 0.22 0.18 0.19
60 schools 0.17 0.13 0.18 0.15 0.16
Model 5 (th_z, th_3)
10 schools 0.44 0.33 0.44 0.42 0.41
20 schools 0.28 0.21 0.28 0.27 0.26
30 schools 0.23 0.17 0.22 0.21 0.21
40 schools 0.19 0.15 0.19 0.18 0.18
60 schools 0.16 0.12 0.16 0.15 0.14

! The minimum detectable effect size equals the minimum detectable effect measured in raw PEP test
scores divided by the standard deviation of the raw scores.

NOTE: Based on the mean values of t% s2 and the sample standard deviation for all years of available
full-sample data for each model, and assuming 60 students per school (approximately the average grade
size for the full-sample).
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Table4

Estimated Minimum Detectable Effects and Effect Sizes

For Longitudinal and Cohort Approaches

(longitudinal sub-sample)

Minimum Detectable Effect and Effect Size
for 40 Schools and 60 Students per School

Raw Pep Test Score Effect Size
1991 1992 1991 1992

Sixth-grade Math

Model 1 (no covariates) 3.9 37 0.36 0.34
Longitudinal approaches

Mode 6 (Yijt-1) 17 22 0.16 0.20

Mode 7 (Vijt-2) 27 25 0.25 0.23

Model 8 (Vit.1, Yit-2) 17 21 0.16 0.20
Repeated cross-section approaches

Model 2 (Y1) 20 23 0.18 0.21

Model 4 (Yjt.2) 29 23 0.27 0.21

Mode 3 (Yj.1, Yi2) 2.0 2.2 0.19 0.20
Longitudinal + Repeated cross-section

Mode! 9 (Vijt1, Yie1) 13 19 0.12 0.17

Model 10 (Vii2. Yi.2) 2.0 2.0 0.19 0.18
Sixth-grade Reading

Model 1 (no covariates) 33 2.8 0.32 0.25
Longitudinal approaches

Mode 6 (Yijt-1) 1.4 1.0 0.13 0.09

Mode 7 (Vijt-2) 13 1.8 0.13 0.16

Model 8 (Vit.1, Yit-2) 12 1.0 0.11 0.09
Repeated cross-section approaches

Model 2 (Y1) 17 19 0.17 0.18

Model 4 (Yjt.2) 20 2.2 0.19 0.20

Mode 3 (Yj.1, Yit2) 18 20 0.17 0.18
Longitudinal + Repeated cross-section

Mode 9 (Vijt1, Yie1) 12 1.0 0.11 0.09

Model 10 (Vii2. Yi.2) 11 1.8 0.11 0.16
Third-grade Math

Model 1 (no covariates) 3.6 33 0.37 0.33
Longitudinal approaches

Mode 6 (Yijt-1) 33 2.8 0.34 0.27

Mode 7 (Vijt-2) 29 2.9 0.30 0.28

Model 8 (Vit.1, Yit-2) 29 2.6 0.30 0.25
Repeated cross-section approaches

Model 2 (Y1) 17 17 0.18 0.17

Model 4 (Yjt.2) 21 21 0.21 0.20

Mode 3 (Yj.1, Yit2) 16 17 0.17 0.16
Longitudinal + Repeated cross-section

Mode! 9 (Vijt1, Yie1) 20 15 0.20 0.15

Model 10 (Vii2. Yi.2) 2.1 2.1 0.22 0.21
Third-grade Reading

Model 1 (no covariates) 3.8 35 0.35 0.31
Longitudinal approaches

Mode 6 (Yijt-1) 2.1 1.8 0.19 0.16

Mode 7 (Vijt.2) 18 2.1 0.17 0.19

Model 8 (Vit.1, Yit-2) 18 18 0.16 0.16

Repeated cross-section approaches
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Model 2 (Y1)
Model 4 (Yjt.2)
Mode 3 (th_l, th_z)
Longitudinal + Repeated cross-section
Model 9 (Vije1, Y1)
Model 10 (Yijt2, Yit-2)

22
21
1.7

19
13

20
1.7
15

16
1.7

0.20
0.19
0.16

0.17
0.12

0.18
0.15
0.13

0.15
0.15

! The minimum detectable effect size equals the minimum detectable effect measured in raw PEP test

scores divided by the standard deviation of the raw scores.

NOTE: Sixth-grade sample sizes for 1991 math and reading and 1992 math and reading are 1,153,

1,153, 1,363 and 1,365, respectively; those for third-graders are 1,545, 1,545, 1,754 and 1,754.
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