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Abstract 

This paper examines how controlling statistically for baseline covariates (especially 
pretests) improves the precision of studies that randomize schools to measure the impacts of 
educational interventions on student achievement. Part I of the paper introduces the concepts, 
issues, and options involved. Parts II and III present empirical findings that illustrate how preci-
sion is influenced by a wide range of different covariates. These findings were based on multi-
ple years of individual data for student test scores in reading and math from five urban school 
districts. They represent grades three and five for elementary schools, grade eight for middle 
schools, and grade ten for high schools. Part IV of the paper compares its results to those of pre-
vious research, presents an approach for quantifying uncertainty about its results, and considers 
what further research is needed. Findings indicate that: (1) pretests can reduce the number of 
randomized schools required for a given level of precision to about one-half of what would be 
needed otherwise for elementary schools, one-fifth for middle schools, and one-tenth for high 
schools; (2) aggregate school-level pretests are as effective in this regard as are individual stu-
dent-level pretests; (3) the precision-enhancing power of pretests declines somewhat, but not 
much, as the number of years between the pretest and post-tests increases; (4) the precision-
enhancing power of pretests for multiple baseline years is only slightly greater than that for a 
single baseline year; and (5) the precision-enhancing power of pretests is substantial, even when 
the pretest differs from the post-test. 
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Introduction 

The best way to measure the impacts of many important educational interventions is to 
randomize schools to a treatment group, which receives the intervention, or a control group 
which does not, and compare future student outcomes for the two groups. This design is espe-
cially appropriate for evaluating whole school reforms, which are intended to change how 
schools operate.1 Randomizing schools is also the design of choice for evaluating classroom-
level innovations, if the innovations are likely to “spillover” from treatment classrooms to con-
trol classrooms within schools.2  

The principal drawback of this approach, however, is its limited statistical power or 
precision and the corresponding need to randomize large numbers of schools (often 40 to 60) in 
order to identify with confidence intervention effects or impacts that are educationally meaning-
ful.3 One of the most promising ways to improve the precision of such designs is to use multiple 
regression analysis (also referred to as analysis of covariance) to control for characteristics of 
schools and/or students during a baseline period before randomization occurs. Such baseline 
characteristics or “covariates” can include demographic factors, socio-economic factors and 
measures of past student performance (pretests).  

The present paper explores the use of such covariates to improve precision.4 Its findings 
indicate that: 

• Pretests can reduce dramatically the number of schools that must be random-
ized to achieve a given level of precision. For elementary schools, pretests 
can reduce the required sample of schools to less than half of what it would 
be without a covariate. For middle schools, pretests can reduce the required 
sample of schools to about one-fifth of what it would be without covariates. 
For high schools, pretests can reduce the required sample of schools to less 
than one-tenth of what it would be without covariates. 

                                                   
1In theory one could randomize individual students to treatment schools that were chosen to launch the re-

form being tested or control schools where the reform was not taking place. In practice, however, this approach 
can be more difficult to implement than randomizing schools. 

2For innovations that are highly technical and/or involve specific hardware (e.g., computerized instruction) 
or are difficult to implement without direct assistance, there might be negligible spillover if classrooms were 
randomized. Unfortunately, little is known about when spillovers are or are not problematic. 

3See Bloom (2005), Schochet (2005), and Bloom, Bos, and Lee (1999).  
4The present paper was developed in conjunction with a companion paper by Raudenbush, Martinez, and 

Spybrook (2005). This work builds on past research by Gargani and Cook (forthcoming), Bloom (2005), Scho-
chet (2005), Hedberg et al. (2004), Janega et al. (2004), Murray and Blitstein (2003), Bloom, Bos, and Lee 
(1999), Feng et al. (1999), Ukoumunne et al. (1999), and Raudenbush (1997), among others.  
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• The reduction in required sample size produced by an aggregate school-level 
covariate (data for which are readily and cheaply available from many school 
districts) is often equivalent to that produced by an individual student-level 
pretest (data for which are much more difficult and expensive to obtain).  

• The predictive power of pretests declines somewhat as the number of years 
between the baseline pretest and follow-up post-tests increases. Thus, preci-
sion for impact estimates during the second and third years of a follow-up pe-
riod is somewhat less than that for the first year. But for all of these years, us-
ing a pretest greatly reduces the number of schools that must be randomized. 

• The predictive power of pretests for multiple baseline years is only slightly 
greater than that for a single baseline year. Thus the additional improvement 
in precision produced by additional years of baseline pretest data is limited. 

• The predictive power of pretests is substantial, even when the test used for 
the pretest differs from that used for the post-test, which occurs when school 
districts or states change how they assess student progress.  

Part I of the paper introduces the concepts, issues, and options that are addressed. It be-
gins by describing the types of research designs considered and the basic analytics of these de-
signs, with a focus on parameters that determine their precision. Some of these parameters — 
like the number of schools randomized, the number of students per school in the grade or grades 
of interest, the ratio of treatment schools to control schools, and which covariates to control for 
— are design choices to be made by researchers (although there are often important constraints 
on these choices). Others of these parameters — like the relative magnitudes of the variances of 
the outcome measure between and within schools, and the ability of different covariates to re-
duce these variances — typically must be taken as given. These latter parameters depend on the 
outcome measures used and the types of schools being randomized. Hence, their influence var-
ies from context to context. 

Parts II and III of the paper present empirical findings, which illustrate how precision is 
influenced by a wide range of covariates. The parameter estimates that underlie these findings 
are presented in the appendix. These estimates, which were obtained from administrative data 
for five urban school districts, represent elementary schools (grades three and five), middle 
schools (grade eight) and high schools (grade 10).5 They are based on data for individual student 
scores on standardized tests in reading and math during multiple years per district.  

                                                   
5Districts represented are Atlanta, Georgia; Columbus, Ohio; Houston, Texas; Newark, New Jersey; and 

Rochester, New York. No findings are presented by district name and the order of districts is not indicated. 
(continued) 
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Part IV of the paper presents some concluding thoughts about how the present results relate 
to those from past research, how to quantify the uncertainty that exists about the present results, and 
further empirical research that is needed to improve our understanding of the issues addressed. 

                                                   
Elementary school findings are available for all five districts, whereas middle school findings and high school 
findings are available for only two. 



 4

Part I: Concepts, Issues, and Options 

 This part of the paper describes the key concepts that frame the present research, the 
analytical issues that are addressed, and the research-design options that are considered. 

Measuring Education Effects by Randomizing Schools  
Regardless of the reasons for randomizing schools, there are two basic designs for ana-

lyzing the results of such studies. One design — repeated cross-sectional analysis — follows 
outcomes for a specific grade (or grades) in the treatment schools and control schools over time 
and estimates the impacts of the reform at a given point in time as the treatment and control 
group difference in mean outcomes. Using this design one might, for example, measure the im-
pact of an intervention on third grade student achievement during each of several follow-up 
years. Note that the design is based on the same schools over time with different students each 
year in the target grade or grades. 

The second design — longitudinal analysis — follows a specific student cohort or 
group of student cohorts over time. It might, for example, follow up all students who were in 
second grade when the reform was launched, regardless of whether they move away or stay in 
their original schools. This design is based on the same students over time but a varying mix of 
schools. Another version of longitudinal analysis would follow up all students who were in a 
particular grade when their schools were randomized and did not change schools subsequently.6 
This approach, which involves the same students and schools over time, might for example, 
follow up all students who were in second grade when their schools were randomized and did 
not move away. For both longitudinal samples, impacts could be estimated as the difference in 
mean outcomes for the treatment group and control group during each follow-up year.7 

The following statistical model provides a simple way to estimate the difference of 
mean outcomes at a given point in time for either a repeated cross-sectional analysis or a longi-
tudinal analysis. This model serves as a point of departure for the present discussion. 

 ijjjij eTy εβα +++= 0  (1) 

where: 
                                                   

6In theory, the most problematic aspect of this second longitudinal design is its potential for selection bias. 
This can occur if the intervention affects student mobility (Bloom, 2005). When this occurs, the initial compa-
rability of the students in the treatment and control groups is lost because of differential out-migration. 

7More sophisticated growth-curve models (Singer and Willet, 2003) also could be used to estimate inter-
vention effects for the two types of longitudinal designs. These models are most appropriate for analyses that 
focus explicitly on developmental trajectories. 
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 yij = the outcome for student i from school j, 

 α =  the mean outcome for control schools, 

 Β0 =  the true average effect or impact of the intervention, 

 Tj =  one for students from treatment schools (intervention schools) and zero for 
   students from control schools, 

 ej = a random error for school j, which is assumed to be independently and 
  identically distributed across schools, 

 εij =  a random error for student i from school j, which is assumed to be 
   independently and identically distributed across students within schools. 

The intercept, α, in the model equals the mean value of the outcome measure for the con-
trol group. The regression coefficient, Β0, equals the difference between the mean outcome for the 
treatment group and control group. Hence, it is the impact of the intervention on the outcome. In 
these two regards, Equation 1 is the same as statistical models that apply to designs that randomize 
individuals. What makes it different is the presence of two random errors instead of one. 

The second error, εij, represents a student-specific error that varies randomly across stu-
dents within schools. It is the same as that for research designs that randomize individuals 
within clusters. The first error, ej, represents a school-specific error that varies randomly be-
tween schools. It is this error that greatly reduces the statistical precision (or power) of cluster-
randomized designs. Because of this error the precision of cluster-randomized designs is usually 
limited by the number of clusters randomized.8 Consequently, cluster-randomized designs tend 
to require large numbers of clusters (explained later), which can be quite expensive. Given this 
constraint, it is especially important to find ways to improve precision without increasing the 
number of clusters. 

Improving Precision Using Baseline Covariates 
To improve precision for a given number of randomized schools and students requires 

collecting additional information about them. There are two basic ways to do so. One way is to 
increase the frequency and/or duration of follow-up data collection after random assignment 
occurs. This approach, which increases data collection costs accordingly and has important limi-
tations for cluster-randomized studies, is discussed elsewhere (for example, Schochet, 2005, 
                                                   

8For a detailed discussion of how cluster randomization reduces the precision of estimates of intervention 
effects see any of the references cited in Note 1 or consult either of the two existing textbooks on cluster ran-
domization, Donner and Klar (2000) or Murray (1998). 
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Singer and Willet, 2003, Murray and Blitstein, 2003, Raudenbush and Liu, 2001, and Frison 
and Pocock, 1992). The other way to proceed is to collect information about sample members’ 
characteristics during the baseline period before random assignment. Such baseline information 
might include school-level or student-level demographic characteristics, test scores for each 
student in previous years (student-level pretests), mean test scores for the same grade in each 
school during previous years (school-level pretests), or a mix of these alternatives. The present 
paper refers to all such baseline characteristics as covariates. 

There are several ways to use information on baseline covariates to improve the preci-
sion of impact estimates for cluster-randomized designs. One way is to create matched pairs or 
stratified blocks of clusters based on similarities in their covariate values and then to randomize 
clusters within pairs or blocks. This approach, which has important strengths and weaknesses, is 
discussed in detail by Raudenbush, Martinez, and Spybrook (2005) plus a number of other au-
thors.9 Another approach, which is the basis for the present paper, is to control for covariates 
using a simple statistical model like Equation 2 or 3 below. 

  ijjijjij exTy εββα ++++= 10  (2) 

or 

 ijjjjij eXTy εββα ++++= 10  (3) 

where: 

 xij = an individual-level covariate for student i from school j, 

 Xj = an aggregate covariate for all students in a particular grade from school j. 

Equations 2 and 3 are approximations to reality that assume linear and additive relation-
ships between the treatment, the outcome, and the covariate. Hence, they assume that the rela-
tionship between the covariate and the outcome (Β1) is the same for the treatment group and 
control group (i.e., there is no interaction between the covariate and treatment status.) In addi-
tion, Equation 3 assumes that the relationship between the covariate and the outcome (Β1) is the 
same for all schools (i.e., there are no school contextual effects). Furthermore, both equations 
assume that the school-level variance is the same for the treatment group and control group and 
the student-level variance is the same for the treatment and control group. (Raudenbush, Marti-

                                                   
9The primary strength of blocking or matching methods is their ability to reduce standard errors of impact 

estimates. Their primary weakness is their reduction in the number of degrees of freedom available to estimate 
variances (Raudenbush, Martinez, and Spybrook, 2005, Bloom, 2005, and Martin et al., 1993). When consider-
ing such approaches, one must compare the likely magnitudes of these two offsetting forces. 
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nez, and Spybrook, 2005, examine the assumptions that underlie this approach and compare it 
analytically to matching or blocking on covariates.)   

In a wide range of settings, the most effective covariate for such models is a baseline 
measure of the outcome of interest. These measures, which are referred to in the present paper 
as pretests, reflect many different observable and unobservable factors that influence future out-
comes. A student-level pretest represents individual past performance. Thus, for example, it 
might comprise last year’s second grade test scores for this year’s third grade students. A 
school-level pretest represents the mean performance of past students in the same grade. Thus, 
for this year’s third graders it might comprise last year’s average third grade performance at 
each school. Another source of baseline covariates is measures of student-level or school-level 
demographic characteristics. 

Using Minimum Detectable Effect Size as a Measure of Precision 
A convenient way to report the precision of a research design is its minimum detectable 

effect or minimum detectable effect size.10 Intuitively a minimum detectable effect is the small-
est true effect that a design can detect with confidence. Formally, a minimum detectable effect 
is the smallest true effect that has a given level of statistical power for a given level of statistical 
significance. 

Bloom (2005) presents a version of the following expression for the minimum detect-
able effect (MDE) of an impact estimator given: J randomized schools, n students per school in 
the grade or grades of interest, proportion P of the schools randomized to the treatment, and no 
baseline covariates. This expression provides a point of departure for the present discussion. 

 
nJPPJPP

MMDE J
)1()1(

22

2
−

+
−

= −
στ  (4) 

where: 

 MJ-2 = a multiple of the standard error of the impact estimator, 

 τ2 =  the variance of the school-level random error, ej, 

 σ2
 =  the variance of the student-level random error, eij, 

   J =  the total number of schools randomized, 

                                                   
10See Bloom (1995) for a discussion of the minimum detectable effects of designs that randomize indi-

viduals. See Bloom (2005) for a discussion of the minimum detectable effects of cluster-randomized designs.  
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  n = the number of students per school in the grade of interest, 

  P = the proportion of schools randomized to treatment. 

Equation 4 illustrates the two ways that the number of schools randomized (J) influ-
ences the minimum detectable effect. One way is through the “degrees of freedom” multiplier,” 
MJ-2. This multiplier reflects how the t distribution, which is the basis for testing the statistical 
significance of impact estimates, varies as a complex function of the number of degrees of free-
dom available, where the number of degrees of freedom equals the number of schools random-
ized minus two (J-2). This function depends on the statistical significance level to be used, the 
statistical power level desired, and whether a one-tail or a two-tail test will be conducted. Once 
these conventions have been specified, the multiplier depends only on the number of clusters 
(schools) that are randomized. When there are very few clusters (10 or less), MJ-2 increases rap-
idly as the number of clusters declines further. As the number of randomized clusters increases 
beyond about 40, the value of the multiplier changes very little. For large numbers of random-
ized clusters, the multiplier is approximately equal to 2.8 for two-tail tests and 2.5 for one-tail 
tests, given 80 percent statistical power and 0.05 statistical significance.11 

The second way that increasing the number of randomized clusters influences the 
minimum detectable effect is by reducing the standard error of impact estimates, which is in-
versely proportional to the square root of the number of clusters randomized. This relationship 
is represented in Equation 4 by the fact that J is in the denominators of the two terms under the 
square root sign (for the school-level variance, τ2, and the student-level variance, σ2).  

Overall then, for moderate-size to large samples of randomized clusters (more than 20, 
for example), MJ-2 does not change appreciably with changes in J, and the minimum detectable 
effect size is approximately inversely proportional to the square root of the number of clusters 
randomized. For example, quadrupling the number of randomized clusters would cut the mini-
mum detectable effect size in half.  

The number of individuals per cluster (n) plays a less central role in determining mini-
mum detectable effects because it only appears in the denominator for the individual-level vari-
ance, σ2.12 Because of this, increasing the number of students per school has a rapidly diminish-
ing effect on precision. Indeed, for many situations, changing this parameter has almost no ef-
fect (Bloom, 2005).  

                                                   
11See Bloom (1995) and Bloom (2005) for further details. 
12For simplicity, the present discussion is formulated in terms of a constant number of students per school 

in the grade of interest. When the number of students varies across schools, this parameter should be replaced 
by the harmonic mean of the number of students per school. 
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The effect on precision of changing the proportion of clusters randomized to the treat-
ment (P) is often less than expected.13 To see this, note that P(1-P) is in the denominators for the 
school-level and student-level variances. Thus, other things being equal, the minimum detect-
able effect is proportional to )1(/1 PP − . The value of )1(/1 PP −  is 2.00, 2.04, 2.18, 
2.50, and 3.33, when P is equal to 0.5, 0.6, 0.7, 0.8, and 0.9, respectively, or when P is equal to 
0.5, 0.4, 0.3, 0.2, or 0.1, respectively.  

Thus, for example, moving from a balanced design with half of the J schools in a sample 
being randomized to treatment (P = 0.5) to a sample with 7 out of 10 of these schools randomized 
to treatment (P = 0.7) increases the value of )1(/1 PP −  from 2.00 to 2.18. This 9 percent in-
crease in )1(/1 PP −  implies a 9 percent increase in the minimum detectable effect. 

Hence, with respect to precision, there is considerable latitude for using unbalanced al-
locations to reduce study costs or reduce political opposition to randomization. However, unbal-
anced allocations are not as robust as balanced allocations to failures of distributional assump-
tions that underlie impact estimates (see Bloom, 2005, and Gail et al., 1996, for a discussion of 
this issue, which is beyond the scope of the present paper). Thus, for studies that randomize 
clusters, balanced designs or designs that do not depart substantially from balance (with 0.4 < P 
< 0.6) are recommended.  

The minimum detectable effect in Equation 4 is reported in the natural units of the out-
come measure being used. Thus, for example, if the outcome is measured as a scale score on a 
test, the minimum detectable effect is reported in scale score points. If instead the outcome is re-
ported in Normal Curve Equivalents (NCEs), the minimum detectable effect is reported in NCEs. 

It is often the case in education research and behavioral science that intervention effects 
are measured in “effect size” units, which provide a standardized reporting metric. This metric 
reports effects as a multiple of a standard deviation of the outcome measure. The present discus-
sion measures effect size as a multiple of the standard deviation of the outcome across all stu-
dents from all schools in the study sample.14 Thus an effect size of 0.25 represents an impact 
that is equal in magnitude to one-quarter of the total student-level standard deviation. To con-
vert Equation 4 to a corresponding expression for minimum detectable effect size (MDES), one 

                                                   
13Bloom (1995) considers this issue in more detail for designs that randomize individuals, and Bloom 

(2005) considers this issue in more detail for designs that randomize clusters. 
14More specifically, this is the total variation across students within the treatment group and within the 

control group. That said, it should be noted that different researchers use different standard deviations to define 
an effect size. These differences make it difficult (impossible in some cases) to compare impact estimates 
across studies. Most problematic in this regard are: (1) standard deviations that are regression-adjusted versus 
those that are not, (2) standard deviations that are adjusted for reliability versus those that are not, and (3) stu-
dent-level standard deviations versus school-level standard deviations.  
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would divide it by the total standard deviation of the outcome measure across all students 
or στ 22 + , yielding 

   
στστ 22

22

2 /
)1()1(

+
−

+
−

= −

nJPPJPP
MMDES J

 (5) 

To translate this expression into one that is more useful for the present discussion re-
quires defining an additional parameter, the intra-class correlation or ρ, where 

 
στ

τρ
22

2

+
=  (6)

  

The intra-class correlation equals the proportion of the total variance across all students (τ2 +σ2) 
that is due to the variance between schools, τ2. This parameter represents how students are 
grouped within schools. 

At one extreme (perfectly heterogeneous clusters), if the mean values of the outcome 
were the same for all clusters, τ2 would equal zero, and the intra-class correlation would be zero. 
Hence, all of the variation across individuals would be within clusters, and none would be be-
tween clusters. Consequently, randomizing clusters would be equivalent to randomizing indi-
viduals, aside from the difference in the number of degrees of freedom available. 

At the other extreme (perfectly homogeneous clusters), if the mean values of the out-
come were different for different clusters but the values of the outcome were the same for all 
individuals in a cluster, σ2 would equal zero and the intraclass correlation would equal one. 
Hence, all of the variation across individuals would be between clusters, and none would be 
within clusters. If this were the case, the value of the outcome for one individual in a cluster 
identifies its values for all other individuals in that cluster. 

Rearranging terms in Equation 5 and substituting into it the definition of the intra-class 
correlation yields 
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Equation 7 illustrates how the intra-class correlation provides a convenient way to represent τ2 
and σ2 in the determination of minimum detectable effect sizes. As can be seen, ρ replaces 

)/( 222 σττ +  and (1-ρ) replaces )/( 222 στσ + . Thus, ρ represents the between-cluster 
variance, and (1-ρ) represents the within-cluster variance. 
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Note that in Equation 7 ρ is divided by J, whereas (1-ρ) is divided by J times n. Thus, 
increasing the number of clusters reduces the influence of both variances on the minimum de-
tectable effect, whereas increasing cluster size only reduces the influence of the within-cluster 
variance. Consequently, doubling the number of clusters randomized will reduce the minimum 
detectable effect size by far more than will doubling the number of individuals per cluster. 

Determining Precision When Baseline Covariates Are Used 
Now consider how the minimum detectable effect size changes when a covariate or set 

of covariates is used to reduce the variance of the school-level random error (τ2), the variance of 
the student-level random error (σ2), or both.15  
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where: 

 R2
C = the proportion of the random variance between schools that is reduced by 

  the covariate or covariates (their school-level explanatory power), 

 R2
I = the proportion of the random variance within schools that is reduced by the 

  covariate or covariates (their individual-level explanatory power), 

 K =  the number of cluster-level covariates used.  

First note that the number of degrees of freedom for the minimum detectable effect 
multiplier changes to MJ-K. This accounts for the loss of one degree of freedom per school-level 
covariate used. If one school-level covariate were used, the number of degrees of freedom 
would be J-3; if two school-level covariates were used, the number of degrees of freedom 
would be J-4; and so on. Student-level covariates do not affect the number of degrees of free-
dom and thus do not affect the degrees of freedom multiplier. 

                                                   
15Raudenbush (1997) presents exact expressions that can be used to determine minimum detectable effects 

when using a single cluster-level covariate or a single individual-level covariate. These expressions include 
additional terms not presented here, which do not affect precision appreciably when more than about 20 clus-
ters are randomized. We are not aware of corresponding exact expressions for designs that use multiple cluster-
level or individual-level covariates. Thus, we present Equation 8 and the findings that follow from it as simple 
extensions of findings for a single covariate. We believe that these extensions are reasonable approximations 
for planning research designs because using multiple covariates in a model is similar in spirit (but not exactly 
the same) as using a composite indicator of these covariates as a single covariate.  
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Other things equal, reducing the number of degrees of freedom increases the minimum 
detectable effect multiplier. This issue is most important for samples with very few randomized 
clusters (less than 10), where losing several degrees of freedom can make a big difference.16  

The more important differences between Equation 8 for impact analyses with covariates 
and Equation 7 for impact analyses without covariates are the two new terms in Equation 8, R2

C 
and R2

I. These terms represent the proportion of the school-level random variance (τ2) and stu-
dent-level random variance (σ2) that is reduced or “explained” by the covariate or covariates.17 
Specifically: 
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and  
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where: 

 τ2
* =  the school-level variance that remains unexplained by the covariates, 

 σ2
* = the student-level variance that remains unexplained by the covariates.  

Thus (1-R2
C) and (1-R2

I) represent the proportions of the two random variances that remain 
when a covariate is added to the analysis. The greater the explanatory power of the covariates is, 
the more they reduce the unexplained variances; consequently the more they reduce the mini-
mum detectable effect size. 

School-level covariates can only reduce random variation between schools because 
their values are constant for all students in a school. Thus, R2

I is zero for designs with school-
level covariates only. Student-level covariates can reduce random variation between schools 
and across students within schools because their individual values can vary across students 
within schools and their mean values can vary between schools. Nonetheless, as will be shown 

                                                   
16This is not to suggest that multiple school-level covariates can be used with abandon; quite to the con-

trary. Since precision is at such a high premium with cluster randomized designs, even small losses can be im-
portant. Therefore one should only use school-level covariates that substantially reduce the school-level vari-
ance.  

17When using a student-level covariate (as in Equation 4) it is theoretically possible for τ*
2 to be larger 

than τ2, which would imply a negative value for R2
C. This could occur if the correlations between the covariate 

and outcome at the student level and school level were in opposite directions. However, this is extremely 
unlikely to occur for a pretest and post-test that measure the same construct.  
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later, some school-level covariates can reduce minimum detectable effect sizes by as much as or 
more than student-level covariates. 

One common mistake that is made when thinking about the affects of covariates on 
precision is to focus only on how the intra-class correlation changes from its unconditional 
value for a design without covariates to a conditional value for a design with covariates. Doing 
so can be misleading, however, because the intra-class correlation only represents the magni-
tudes of the two variances components, τ2 and σ2, relative to each other, whereas precision de-
pends on the actual values of their magnitudes. A simple way to see the fallacy that can result 
from such thinking is to consider the case of a single student-level covariate that substantially 
reduces τ2 and σ2 and thereby unambiguously improves precision. It is possible for this covari-
ate to reduce τ2 by proportionately less than it reduces σ2. If so, then the covariate will increase 
the intra-class correlation. Consequently it is possible for the covariate to simultaneously in-
crease the intra-class correlation and improve precision. 

Equation 8 illustrates how the three design parameters that must be chosen for a study 
(J, n, and P) and the three empirical parameters that must be taken as given (ρ, R2

C, and R2
I) 

determine the minimum detectable effect size. Much has been written about the influence of the 
three design parameters. Much less has been written about the influence of the three empirical 
parameters. 

To understand what is at stake here, consider the minimum detectable effect sizes in 
Table 1. These illustrative findings were obtained from Equation 8 for a range of values of ρ, 
R2

C, and R2
I, given a sample of 40 clusters with 60 individuals each and half of the clusters ran-

domized to treatment (J = 40, n = 60, and P = 0.5). Each panel in the table represents a different 
value for the intra-class correlation (ρ). (Note that this is the “unconditional” intra-class correla-
tion without any covariates.) 

The minimum detectable effect size in the upper left-hand corner of each panel repre-
sents a cluster-randomized design without covariates and thus values of zero for R2

C and R2
I. 

For example, when ρ equals 0.15, the minimum detectable effect size for a design with no co-
variates is 0.37. Now consider what happens when a school-level covariate is added to the 
analysis. First recall that such covariates can increase R2

C but cannot affect R2
I. In the table this 

is equivalent to moving from left to right in a row. When doing so, the minimum detectable ef-
fect size declines rapidly. Thus, increasing R2

C produces dramatic improvements in precision, 
all else being equal. For example, when R2

C reaches 0.8 (given ρ = 0.15 and R2
I = 0.0), the 

minimum detectable effect size falls to 0.19, which is roughly half of its original value. This 
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improvement in precision is equivalent to that which would be produced by a fourfold increase 
in the number of clusters (schools) randomized.18 

Now consider what happens when a student-level covariate is added to the analysis. 
Recall that such covariates can increase both R2

I and R2
C. In the table, increasing R2

I is equiva-
lent to moving down a column in a panel. This makes very little difference to the minimum de-
tectable effect size.19 For example, moving down the first column in the middle panel indicates 
that when R2

I equals 0.8 (given ρ = 0.15 and R2
C = 0.0), the minimum detectable effect size 

equals 0.36. This is almost identical to the corresponding minimum detectable effect size with-
out covariates. Thus, reducing the student-level variance has almost no effect on precision. This 
finding is consistent with the fact that increasing the number of individuals per cluster often has 
little effect on precision (Bloom, 2005). Nonetheless, an individual-level covariate can also re-
duce the cluster-level variance, thereby increasing R2

C, which can reduce the minimum detect-
able effect appreciably. 

Lastly, consider how the unconditional intra-class correlation (ρ) affects precision by 
comparing the minimum detectable effect sizes of corresponding cells in the three panels in Ta-
ble 1. As can be seen, other things being equal, a higher intra-class correlation creates a larger 
minimum detectable effect size and thus produces less precision. For example, a design with no 
covariates (R2

C = R2
I = 0) has a minimum detectable effect size of 0.30, 0.37, or 0.42 when ρ 

equals 0.10, 0.15, or 0.20, respectively. 

Table 1 illustrates the profound effect that the three empirical parameters can have on the 
precision of impact estimates from a cluster-randomized study. Thus, to design such studies, it is 
crucial to have some knowledge of the likely values of these parameters. The remainder of this 
paper presents such information for situations where the outcome of interest is student achieve-
ment and the clusters to be randomized are schools. This information is based on extensive stu-
dent-level data from the administrative records of five urban school districts. Findings are pre-
sented first for elementary schools (grades 3 and 5), then for middle schools (grade 8) and high 
schools (grade 10). These findings are presented for outcome measures based on the results of 
standardized tests in reading and in math. Data from all five districts are available for elementary 
schools, whereas data from only two districts are available for middle schools and high schools. 
All results are based on estimates of ρ, R2

C, and R2
I, which are presented in the appendix. 

                                                   
18This point can be seen from Equation 8, which illustrates that the minimum detectable effect size is ap-

proximately proportional to the square root of the number of clusters randomized (J). Thus, other things being 
equal, one must increase the number of clusters randomized by a factor of four to reduce the minimum detect-
able effect size by a factor of two.  

19Centering the values of an individual covariate on its mean for each cluster would increase R2
I but not 

R2
C. Thus, for cluster-randomized studies this is not a good practice. 
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Research Design Questions Addressed 
Before presenting the findings of the present analysis it is useful to clarify the research 

design questions they address. Table 2 presents two categories of such questions. The first cate-
gory contains a series of core questions, which involve the most basic issues that arise in the use 
of covariates for increasing precision in studies that randomize schools to measure the effects of 
educational interventions. The second category contains a series of further questions that have 
arisen from our experiences and the experiences of our colleagues in planning such studies. 

Core Questions 

The first and most fundamental question to address is: By how much can precision be 
improved through the use of data on pretests? If precision can be improved by a lot, then many 
fewer schools can be randomized for given studies, their costs will be reduced accordingly, and 
more studies can be supported by existing funding sources. 

A related sub-question that also has important financial implications is: How much preci-
sion can be gained through the use of school-level pretests versus student-level pretests? Data on 
school-level pretests (mean scores for schools during baseline years) often can be obtained quickly 
and cheaply from electronic reports that are publicly available on state or local Web sites. Data on 
student-level pretests (individual scores during baseline years) must be obtained from the adminis-
trative records of local or state educational agencies, which requires considerably more effort and 
expense. Thus, substantial cost savings can be had if school-level pretests can be used.  

There are several reasons to expect school-level covariates to perform as well as student-
level covariates. First, correlations across aggregate entities (especially, large aggregate entities) 
tend to be much higher than those across individuals.20 For example, several decades ago, when 
most social science research was based on aggregate data for census tracts, communities, states, 
countries, etc., prevailing expectations for correlations were quite high — often in excess of 0.9. 
But recently, as modern technology has facilitated the analysis of large micro-datasets on indi-
viduals, expectations for correlations have become much lower. This suggests that R2

C typically 
will be substantially higher than R2

I unless the number of students per school is very small. Sec-
ond, since the school-level variance (τ2) is usually the binding constraint on precision, increasing 
R2

C is usually far more important than increasing R2
I in order to improve precision. 

The next core question acknowledges the reality that because most educational inter-
ventions are complicated and take considerable time to implement, their evaluations often must 

                                                   
20This is partly because the reliability of an aggregate-level measure is greater than that of an individual-

level measure; thus, correlations are greater for aggregate measures. 
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span several follow-up years. Thus, in designing such evaluations it is important to ensure ade-
quate precision not only for their first year of follow-up but for subsequent years as well. This 
raises the issue of how the predictive power of a baseline covariate declines as the gap in time 
between it and follow-up measures increases. The more quickly this predictive power declines, 
the larger the study sample must be to ensure adequate precision for later follow-up years.  

The next three questions consider how precision varies across subjects (reading and 
math), education levels (elementary school, middle school, and high school), and local school 
districts (the five districts in the present analysis). Findings for reading and math are important 
because of the need to design evaluations of interventions for both subjects. Findings for differ-
ent education levels are important because of the need to evaluate interventions targeted on 
these levels. However, almost all of what is known currently about the precision of studies that 
randomize schools to evaluate educational interventions is for elementary schools.  

Findings for different school districts are important in order to assess how applicable 
they are likely to be for planning future studies. To the extent that findings vary little across dis-
tricts, researchers can be more confident in using these findings to plan future studies. To the 
extent that findings vary widely across districts, it becomes more important for researchers to 
estimate planning parameters directly from baseline data for the districts in which their studies 
will be conducted (which often is not possible). 

The last of the core questions considers how the parameters that determine precision 
vary across years in the same school district. This question relates to the amount of risk that re-
searchers are taking (and thus how conservative they should be) when making assumptions 
about future values of these parameters in order to plan a study. To the extent that these parame-
ters are stable over time in a given district, it is safe to plan a study on their estimates from past 
data. To the extent that these parameters vary over time, researchers must be conservative about 
their likely future values. 

Further Questions 

The next series of questions in Table 2 represents alternative specifications of covariates 
to improve precision. Some of these questions are about potential ways to improve precision by 
more than is possible using a single pretest. Others of these questions are about potential fall-
back positions or second-best solutions to consider when it is not possible to obtain appropriate 
pretest data. 

The first question in this category considers the possible improvement in precision that 
can be achieved by using pretests for two baseline years instead of one. For school-level pretests 
this would require data on mean test scores for each of two baseline years. For student-level pre-
tests this would require data on individual student tests scores for each of two baseline years. It 
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stands to reason that pretests for two baseline years should have greater predictive power (higher 
R2

C or R2
I) and thus produce greater precision than a pretest for one baseline year. But it is an em-

pirical question as to just how much difference a pretest for a second baseline year makes. 

The next question considers using a school-level pretest and a student-level pretest to-
gether. Once again, it stands to reason that two pretests should improve precision by more than 
one. But it is an empirical question as to how much difference the second pretest makes. 

The third question considers how much precision can be achieved if pretest data are not 
available and only demographic characteristics can be used as covariates. This is not likely to 
occur for evaluation studies based on data from local school districts, but it might occur for 
studies based on data from national surveys. The fourth question takes a different tack with re-
spect to using demographic data. It considers the extent to which adding demographic covari-
ates to a pretest can improve precision.  

The fifth question considers situations where the pretest used to measure baseline out-
comes differs from the post-test used to measure follow-up outcomes. Such situations reflect the 
real-world tendency for states and districts to frequently change the tests they use to assess the 
progress of students and schools. One might expect less predictive power, and thus less preci-
sion, in situations where baseline outcomes and follow-up outcomes are measured using differ-
ent tests than when they are measured using the same test. But, for school-level pretests, much 
of the basis for their predictive power might be differences among schools (“school effects”) 
that are fairly stable over time and tests. Thus, it might be possible to achieve values for R2

C that 
are almost as high when post-tests and pretests differ as when they are the same. 

The last two questions in the table consider what precision is likely to be if a study fo-
cused on either of two sub-groups of schools within a district: those with especially high con-
centrations of low-income students and those with especially low past student performance. 
There are at least two reasons to focus on these sub-samples. First, they are the most frequent 
subject of evaluations of educational interventions funded by the U.S. Department of Education 
and private foundations. Thus, focusing on precision for these types of schools is relevant to the 
design of many studies. Second, focusing on these sub-samples represents a simplified version 
of a related approach to improving precision — that of stratifying clusters into blocks. This ap-
proach is intended to create blocks of schools that are as similar as possible before randomiza-
tion. By randomizing within blocks one can ensure that the subsequent treatment and control 
groups are more similar to each other than they would have been without blocking. This in turn 
can reduce the standard errors of impact estimates (although often at the cost of reducing de-
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grees of freedom).21 However, if one is already adjusting for a baseline covariate through a sta-
tistical model, it is not clear how much more precision can be gained by blocking.  

In the present context this situation could occur as follows. If one switched from a sam-
ple of all schools in a district to a sub-sample of those that were either especially low-income or 
especially low-performing or both, the variation in future outcomes for the sub-sample most 
likely would be smaller than that for the full sample (perhaps by a lot). This means that the un-
conditional intra-class correlation for the sub-sample would be less than that for the full sample. 
So, in this regard, precision for the sub-sample would be enhanced relative to that for the full 
sample. However, given the restricted variation in outcomes for the sub-sample, the additional 
explanatory power of covariates is likely to be lower for the sub-sample than for the full sample. 
If so, then it is not clear whether the sub-sample will have more precision, less precision, or 
about the same precision as the full sample for a given research design and sample size.  

The preceding questions reflect a series of hypotheses about the abilities to improve preci-
sion of different types of covariates, different combinations of covariates, and/or different sub-
samples of schools. The following sections provide empirical evidence to test these hypotheses.  

Overview of the Empirical Analysis 
The present empirical analysis is based on individual data for thousands of students 

from hundreds of schools located in five urban school districts. Elementary school analyses fo-
cus on reading and math test scores in grades three and five using data from all five districts.22 
Middle school analyses focus on reading and math test scores in grade eight and the high school 
analyses focus on reading and math test scores in grade 10. Data for middle school and high 
school analyses were only available for two of the five districts. All analyses were also repli-
cated for as many years as possible in each district. 

Table 3 briefly describes the districts, schools, and students in the sample for the present 
analysis. First note that the districts in the sample are fairly large. They represent from 25 to 168 
elementary schools, 17 to 41 middle schools, and 11to 32 high schools. The average elementary 
school in each district had 57 to 75 third-grade students who were tested in a given year; the 
average middle school had 196 to 297 eighth-grade students; and the average high school had 
234 to 269 tenth-grade students. In two districts, students were predominantly black; in two 
other districts they were a mix of blacks and Hispanics; and in the fifth district information was 
not available on their background characteristics. In the three districts where data on economic 

                                                   
21The use of blocking to improve the precision of cluster-randomized studies is discussed by Raudenbush, 

Martinez, and Spybrook (2005), Bloom (2005), Donner and Klar (2000), and Murray (1998). 
22Available data made it necessary to use grade six instead of grade five for one district. 
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status were available for elementary schools, the percentage of students who were categorized 
as low-income ranged from 41 percent to 79 percent. 

The first step in the present analysis for a given grade, subject, district, and year was to 
estimate the unconditional values of τ2 and σ2 (without covariates) and use these estimates to 
compute the unconditional intra-class correlation, ρ. This factor reflects how students in a given 
grade were clustered within schools in the district that year. The second step in the analysis was 
to estimate the conditional values of τ2

* and σ2
*
 for different baseline covariate specifications. 

For each specification the relationships between the conditional and unconditional values of the 
two variances were used to compute R2

C and R2
I. The mean values of these parameter estimates 

(across years for a given grade, subject, and district) are presented in a series of tables to provide 
an empirical guide for planning future evaluation studies. In addition, the mean estimated values 
of the three empirical parameters (ρ, R2

C, and R2
I) were used to compute minimum detectable 

effect sizes for alternative sample designs for each grade and subject. 

Because of the very large number of findings produced it was necessary to develop a 
strategy for presenting them in a manner that provides both an effective way to address the re-
search design questions posed above and adequate detail for helping researchers plan future 
studies. The remainder of the paper is thus structured as follows.  

Part II of the paper presents findings for elementary schools. It begins with a detailed 
presentation of findings for third grade reading. The remainder of this part focuses on a consoli-
dated summary of findings for third grade and fifth grade reading and math. This avoids the re-
dundancy that would occur if all detailed findings were presented and facilitates comparisons of 
findings across grades and subjects. Corresponding detailed findings are presented in the ap-
pendix. Part III of the paper presents summarized findings for middle schools and high schools, 
whose detailed findings are presented in the appendix to this paper. Part IV of the paper reflects 
briefly on the implications of these findings. 
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Part II: Findings for Elementary Schools 

This part of the paper presents findings for elementary schools. 

Detailed Findings for Third Grade Reading 
The discussion of findings begins with a complete examination of the detailed findings 

for third grade reading. This serves several purposes. First it introduces readers to the material in 
enough detail so that they can understand the full range of findings presented in the text and ap-
pendix. Second it provides a template for presenting the findings for other grades and subjects. 
Third it identifies most of the key issues, findings, and implications that apply to the other 
grades and subjects.  

Precision with a Single Pretest 

Tables 4 through 8 present detailed findings for third grade reading. Table 4 addresses 
the first two core research design questions. It presents estimates of minimum detectable effect 
sizes for a research design with no covariates or a single pretest, given the mean estimated val-
ues (across years) of ρ, R2

C, and R2
I for these covariate specifications in each district. Minimum 

detectable effect sizes are based on the assumptions of 80 percent statistical power and 0.05 sta-
tistical significance for a two-tail hypothesis test with 60 third graders per school. Results in the 
top, middle, and bottom panels are for samples of 20, 40, and 60 schools, respectively, with half 
of the schools in each case randomized to treatment 

The first five columns in the table present findings by district. The last column presents 
the mean values of the corresponding district results (with each district weighted equally). 
Means that are not based on data for all districts are presented in parentheses. Although these 
findings for subsets of districts are important in their own right, they are not fully comparable to 
findings for all districts.  

Each row in a panel presents findings for a particular covariate specification. The first 
row presents findings for a design without covariates, which is the starting point for each analy-
sis. The next three rows present findings for school-level pretests that are lagged one, two, and 
three years (Y-1, Y-2, and Y-3). These findings for school-level pretests are used to predict the 
precision that might be expected during the first, second, and third follow-up years of a study, 
respectively. The final three rows in each panel present corresponding results for student-level 
pretests (y-1, y-2, and y-3). 
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Before interpreting these results it is necessary to address the question: How much pre-
cision is needed for an educational evaluation?23 In other words, how small must its minimum 
detectable effect size be? Stated yet another way, must the study be able to detect large effects, 
moderate effects, or small effects according to prevailing standards (discussed below)? From an 
economic perspective, the answer to this question is that the design should be able to detect the 
smallest effect that would enable an intervention to break even in a cost-effectiveness analysis. 
From a political perspective, the answer is that the design should be able to detect the smallest 
effect that would be deemed important by the public or by public officials. From a program-
matic perspective, the answer is that the study should be able to detect an effect that, judging 
from the performance of similar programs, is likely to be attainable. 

There is no universal standard for making such judgments. One widely used approach is 
that of Cohen (1977), who proposed that minimum detectable effect sizes of roughly 0.20, 0.50, 
and 0.80 be considered small, medium, and large, respectively. Lipsey (1990) provided empiri-
cal support for this characterization by examining the actual distribution of 102 mean effect size 
estimates reported in 186 meta-analyses that together represent 6,700 studies with 800,000 
sample members. Consistent with Cohen’s categorization, the bottom third of this distribution 
ranged from 0.00 to 0.32, the middle third ranged from 0.33 to 0.55, and the top third ranged 
from 0.56 to 1.20. 

However, recent research suggests that, at least for education interventions (and perhaps 
for other types of interventions as well), much smaller effect sizes should be considered sub-
stantively important, and thus greater precision might be needed than is suggested by Cohen’s 
categories. Foremost among the findings motivating these new expectations are those from the 
Tennessee Class Size Experiment. These findings indicate that reducing elementary school 
classes from a standard size of 22 to 26 students to a reduced size of 13 to 17 students increases 
average student performance by an effect size of roughly 0.1 to 0.2 (Nye, Hedges, and Konstan-
topoulos, 1999). This landmark study of a major education intervention suggests that even big 
changes in schools produce what by previous standards would have been considered small ef-
fects on student achievement. 

Another important piece of related research is that by Kane (2004), who found that, on 
average nationwide, a full year of elementary school attendance increases students’ reading and 
math achievement by an effect size of only 0.25. Thus, an education intervention that has a 
positive effect size only half as large as this (0.125) would seem to qualify as a noteworthy suc-
cess. Further reinforcing these findings are results published by the National Center for Educa-
tion Statistics (1977) indicating that, on average nationwide, high school students increase their 
reading achievement by an effect size of 0.17 annually and math achievement by 0.26 annually. 
                                                   

23The following four paragraphs are a revised excerpt from Bloom (2005), pp. 131-32. 
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This gain represents the effect of attending school plus the effect of all other factors that are in-
fluencing student development throughout the year. Thus, again the message is clear: program 
effect sizes for student achievement of as little as 0.10 to 0.20 might be policy-relevant. 

At the present time, standards for interpreting the magnitudes of educational impacts 
and thus determining the requisite precision of educational evaluations are in a state of flux. 
However, because numerous recent evaluations have been designed to detect effect sizes of 
roughly 0.20, the present paper uses this value as a benchmark or standard of comparison.24 

Now consider the findings in Table 4, beginning with those for a design without covari-
ates. The mean value of the minimum detectable effect size for this most basic design is 0.57 for 
20 randomized schools (ranging from 0.47 to 0.63 across districts), 0.39 for 40 randomized 
schools (ranging from 0.33 to 0.44 across districts), and 0.32 for 60 randomized schools (rang-
ing from 0.27 to 0.35 across districts). Hence, the design does not appear to be capable of 
achieving the prevailing standard benchmark for precision without randomizing many more 
than 60 schools (about 150), which most likely would be prohibitively expensive. 

The next three rows in each panel of Table 4 illustrate how an aggregate pretest lagged 
one, two, or three years (Y-1, Y-2, and Y-3) can vastly improve this situation for the first, second, or 
third follow-up years of an evaluation study. During the first follow-up year, when the time lag 
between the post-test and pretest is one year, the mean minimum detectable effect size for all dis-
tricts is 0.37, 0.26, and 0.21 for 20, 40, and 60 randomized schools respectively.25 Thus, according 
to these estimates, randomizing 60 schools when using such a covariate would achieve the pre-
vailing benchmark for precision, and randomizing 40 schools would approach doing so. (Note that 
to obtain these samples might require operating a study in multiple districts.) 

During the second follow-up year of an evaluation study, when the time lag between the 
post-test and pretest is two years, the mean minimum detectable effect size for all districts is 
slightly larger: 0.40, 0.28, and 0.23 for 20, 40, and 60 randomized schools, respectively. This 
represents the slightly lower predictive power of a pretest for a two-year time period. During the 
third follow-up year, the mean minimum detectable effect size is slightly larger yet, although it 
is not directly comparable to the others because it represents only three of the five school dis-
tricts in the analysis.  

                                                   
24Two authors of the present paper (Bloom and Rebeck Black) are working with Mark Lipsey of Vander-

bilt University and Carolyn Hill of Georgetown University on a project funded by the U.S. Department of Edu-
cation to examine “The Uses and Abuses of Effect Size Measures.” The goal of this project is to develop em-
pirical benchmarks for assessing effect sizes from educational interventions. 

25The improvement in precision produced by a school-level pretest for the first follow-up year is equiva-
lent to more than doubling the number of schools randomized. 
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Overall, the mean findings suggest that, by randomizing 40 to 60 schools, one can ap-
proach or attain the prevailing standard for precision during the first three years of an evaluation 
study. However, there is considerable variation in the findings across districts, and hence there 
remains an important element of uncertainty about the likely precision of a study based on 
schools in a particular district or group of districts. We illustrate one approach to quantifying 
this uncertainty in the final section of the paper.  

Now consider whether student-level pretests, which are more difficult and costly to ob-
tain, can improve precision by appreciably more than school-level pretests. Findings in the table 
suggest that the answer to this question is no. This can be seen by comparing the minimum de-
tectable effect size during the first follow-up year (the only time for which data from all districts 
are available) for a student-level pretest (y-1) and a school-level pretest (Y-1). For example, with 
40 randomized schools, the mean minimum detectable effect size during the first follow-up year 
is 0.26 for both a school-level and a student-level pretest. And in no district does the student-
level covariate appreciably outperform the school-level covariate. This implies that school mean 
reading scores for last year’s third graders provide as much precision as second grade scores for 
each of this year’s third graders. 

Precision with Other Covariate Specifications and School Samples  

Table 5 addresses most of the remaining research design questions posed earlier. It pre-
sents estimated minimum detectable effect sizes for alternative covariate specifications and 
school samples given a balanced allocation of 40 randomized elementary schools with 60 stu-
dents per school.26 District E is not included in this table because corresponding findings for the 
district are not available.27 

The first panel in the table presents results for alternative covariate specifications 
based on data for the full sample of schools from each district. The second panel presents re-
sults for the simplest pretest specifications based on data for a sub-sample of schools whose 
concentration of poverty (measured by their percentage of students eligible for free lunches) 
was above their district average. The third panel presents results for the simplest pretest speci-
fications based on data for a sub-sample of schools whose past student performance was be-
low their district average.  

                                                   
26Table 5 only reports findings for 40 randomized schools (the middle sample size in Table 4) in order to 

reduce the number of finding to a manageable number. 
27Findings for District E were obtained from Bloom, Bos, and Lee (1999). Because the data for this analy-

sis are no longer available, it was not possible to present findings for covariate specifications or sub-samples of 
schools that were not in the original analysis. 
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The first five rows in the table address the question: How much more precision can be 
obtained by adding a second pretest? The answer to this question for school-level pretests only 
(Y-1 and Y-2) is that adding a pretest for a second baseline year produces virtually no improve-
ment. The average minimum detectable effect size is approximately 0.27 for one or both pre-
tests.28 The same answer applies to student-level pretests only (y-1 and y-2), although to make 
this assessment requires focusing directly on the findings for Districts A and C (which are the 
only districts for which two consecutive student-level pretests are available). As can be seen, 
there is almost no difference between the precision for one individual-level pretest and that for 
two in either district. 

A somewhat more encouraging result occurs with the addition of a school-level pretest 
to a student-level pretest or vice versa (Y-1 and y-1). This is perhaps because the two sources of 
information being combined differ more from each other than is the case for two pretests of the 
same kind. Adding a student-level pretest to a school-level pretest reduces the mean minimum 
detectable effect size from 0.27 to 0.25. Adding a school-level pretest to a student-level pretest 
reduces the mean minimum detectable effect size from 0.28 to 0.25. Findings for all but one 
district are consistent with this pattern. 

The next two rows in the table present estimates of minimum detectable effect sizes 
when school-level or student-level math scores (Z-1 or z-1) are used as a pretest for a third grade 
reading post-test. These findings provide conservative estimates of the precision that one might 
expect when a pretest and post-test represent different tests in the same subject. This situation 
can arise when school districts change their student assessments, which they do frequently. Re-
sults in the table indicate that even if a pretest is in the “wrong” subject, it can improve precision 
dramatically. A school-level math pretest reduces the mean minimum detectable effect size for 
a reading post-test from 0.41 without covariates to 0.29. This is equivalent to doubling the num-
ber of schools randomized. Similarly, a student-level math pretest reduces the mean minimum 
detectable effect size to 0.31. In both cases, the resulting precision is almost but not quite as 
good as that for a pretest and post-test in the same subject. Thus, just because a school district 
changed its student assessment, does not necessarily mean that the baseline data available for 
use as pretests cannot improve precision substantially. 

The last three rows in Table 5 for the sample of all elementary schools from each dis-
trict present estimates of minimum detectable effect sizes that would result if student demo-
graphic characteristics, X, were used as covariates either alone or in conjunction with a school-

                                                   
28The table indicates that the minimum detectable effect size is slightly smaller for two school-level pre-

tests than for one, at three of the four districts and identical at the fourth. However, the mean minimum detect-
able effect sizes across districts are the same for one and two pretests. This apparent inconsistency is due to 
rounding. 
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level or student-level pretest. To properly interpret these findings it is necessary to focus only on 
results for Districts A, B, and C, because demographic data were not available for District D.  

Consider first the results when demographic characteristics are used alone as covariates. 
In this case the estimated minimum detectable effect sizes for Districts A, B, and C are 0.35, 
0.29, and 0.27, respectively. Compare this to the estimated minimum detectable effect sizes for 
a school-level pretest: 0.36, 0.20, and 0.23. Thus, in District A, where the pretest provided the 
least improvement in precision, demographic characteristics appear to be as effective as pretests 
with respect to improving precision. But in Districts B and C, where the pretest provided large 
improvements in precision, demographic characteristics appear to be much less effective in do-
ing so. The findings for Districts B and C are consistent with an overall pattern that exists for 
many different outcomes in many different fields of study, that the best predictor of future out-
comes is usually a similar measure of past outcomes. 

Now consider how precision changes if individual student demographic characteristics 
are added as covariates to a school-level or student-level pretest. The estimates in the table for Dis-
tricts A, B, and C suggest that adding this baseline information can improve precision slightly.  

The next panel in the table — for the sub-sample of low-income schools in each district 
— indicates that narrowing the potential schools to be randomized to a much more homogenous 
pool does not improve precision beyond that which is obtainable for the full sample with a sin-
gle school-level or student-level pretest. This is the case for all three districts (A, B, and C) 
where data were available to identify low-income schools.  

The final panel in the table — for the sub-sample of low-achieving schools in each dis-
trict — presents very similar results. Once again, the precision for this much more homogenous 
sub-sample is no better than that for the full sample. For example, the mean estimated minimum 
detectable effect size for the full sample of schools and this sub-sample both equal 0.27 when a 
school-level pretest is used. 

The findings in the last two panels have very important implications. First they suggest 
that narrowing the pool of schools to be randomized based on their economic status or past per-
formance may not provide more precision than simply using these factors as covariates. (The 
reasons for this result are explored later.) Second these findings suggest that the basic pattern of 
minimum detectable effect sizes for different covariate specifications that were tested for the 
full sample of schools holds for the sub-samples as well.  

Variation in Precision across Years 

 The findings in Table 6 address the question: How stable is precision over time in a 
given district? The answer to this question has important implications for the ability of research-
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ers to predict precision and thereby plan future studies. If precision varies markedly from year to 
year in a district, it is necessary to make conservative assumptions about likely future precision. 
If precision is stable, less conservative assumptions are viable. 

 The table presents the range (from lowest to highest) of minimum detectable effect 
sizes that are implied by the estimated parameters for each district in the present analysis during 
each year for which appropriate data were available. Because data for the two most basic co-
variate specifications were available for more than one year in every district, findings for these 
specifications are presented. As can be seen, sometimes there is considerable variability from 
year to year in the likely minimum detectable effect size for a given district, and sometimes 
there is little variation. This is the case for the full sample of schools from each district, its sub-
sample of low-income schools, and its sub-sample of low-performing schools. Unfortunately, 
there is no known way to predict where and when precision might be variable or stable. There-
fore, when planning a study, one probably should be relatively conservative. 

Parameters Estimates 

 Table 7 provides further detail about the preceding findings by presenting the mean es-
timated values of the three empirical parameters upon which they are based. These results are 
presented for all covariate specifications that were examined for the full sample of schools. The 
first row in the table lists the mean value of the unconditional intra-class correlation, ρ (without 
covariates), for each district. Subsequent rows present the mean estimated values of R2

C (the 
proportion of the school-level variance that is predicted by a covariate) and R2

I (the proportion 
of the student-level variance that is predicted by a covariate). 

The mean value of ρ varies across districts from a low of 0.15 to a high of 0.22. As dis-
cussed in Part IV, this is consistent with most past research.  

The next panel in the table presents values of R2
C and R2

I when school-level pretests are 
the only covariates used. First note that R2

I is zero for all of these covariate specifications. This 
is because the value of a school-level covariate is the same for all students from a given school 
and thus cannot covary with their test scores. Next, note that R2

C varies in predictable ways 
across the different types and combinations of pretests. It declines as the gap in time increases 
between post-tests and pretests, and it is larger for combinations of pretests than for single pre-
tests. Lastly, note that for any given covariate specification, R2

C varies substantially across dis-
tricts. For example, it ranged from a low of 0.31 in District A to a high of 0.77 in District B for a 
single school-level pretest lagged one year (Y-1). 

The middle panel in the table presents values of R2
C and R2

I when student-level pretests 
are the only covariates used. Because these pretests can vary across and within schools, their 
values for R2

C and R2
I are non-zero. These values also vary in predictable ways: declining as the 
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time-lag between pretests and post-tests increases and being higher for combinations of pretests 
than for single pretests.  

It is particularly useful to compare the effects of student-level and school-level pretests 
on R2

C and R2
I because doing so illustrates why student-level pretests do not provide superior 

precision. The simplest and clearest way to make this comparison is to focus on pretests lagged 
one year (y-1 and Y-1) for which data from all districts are available. In terms of R2

C, the school-
level pretest has a slight advantage in all but one district, where it had a considerable advantage. 
In terms of R2

I, the student-level pretest has an advantage that ranges from small to substantial. 
Recall, however, that R2

C represents the reduction in τ2 produced by a covariate, whereas R2
I 

represents its reduction in σ2. Because τ2 has a much larger effect on precision than does σ2 for 
studies that randomize schools to study impacts on student achievement, the higher R2

I for stu-
dent-level pretests does not offset its lower R2

C. Hence, precision for the student-level pretest is 
not greater than that for the school-level pretest.29 

 The bottom panel in the table presents values of R2
C and R2

I for the other major covari-
ate specifications included in the present analysis. These findings are presented because they are 
relevant to researchers who are considering the use of such specifications. 

Parameters Ranges Across School Samples and Time 

Table 8 presents the last in the series of detailed findings for third grade reading. It illus-
trates: (1) the differences in the values of ρ, R2

C, and R2
I for all elementary schools from a dis-

trict and those for their sub-samples of low-income and low-performing schools and (2) the 
variability of these parameter estimates over time. Each cell in the table represents a range of 
estimates across the several years for which data were available from each district. These find-
ings are presented for a school-level pretest (Y-1) and a student-level pretest (y-1).  

Differences between the parameter estimates for the full samples of schools and those 
for the sub-samples explain why precision is no better for the sub-samples than for the full sam-
ples, even though the sub-samples are considerably more homogeneous. Because of this greater 
homogeneity, ρ is typically much smaller for the sub-samples. This can be seen by comparing 
the ranges of estimates of ρ for the three groups of schools in each district. However, it is also 
the case that R2

C is typically much lower for the sub-samples of schools than for the full sam-
ples. This is because the restricted variation in the outcome measure across schools in the sub-
samples provides less of a margin for school-level covariation with a pretest. Another way to 
explain this phenomenon is that the restricted variation in outcomes for schools in the sub-

                                                   
29For a given student-level pretest specification R2

C is usually much larger than R2
I. This reflects the gen-

eral tendency for correlations among aggregates to be higher than correlations among individuals. 



 28

samples contains less “signal to noise” than is the case for the full samples. Because moving to 
a more homogeneous sub-sample of schools reduces both ρ and R2

C, the overall effect on preci-
sion is negligible.  

Lastly note that moving to a sub-sample of schools has little or no effect on R2
I. This is 

because restricting the range of variation in outcomes across schools by choosing a sub-sample 
of them does not necessarily affect the variation in individual outcomes within schools and thus 
does not necessarily affect the margin for covariation with individual pretests.30 

Summary Findings for Elementary Schools 
This section compares summary findings for third grade reading with those for third 

grade math and fifth grade reading and math. The appendix presents all of the detailed findings 
for third grade math and fifth grade reading and math (their equivalents to Tables 4 – 8).  

Table 9 presents the mean minimum detectable effect size by grade and subject for de-
signs that have either no covariates or a single pretest. When comparing these findings across 
grades and subjects note that outcome data for third grade reading and math were available from 
all five districts, whereas outcome data for fifth grade reading and math were not available from 
District D, and outcome data for sixth grade were used to approximate fifth grade for District E. 
These differences in districts could generate differences in findings. In addition, data were not 
available for certain covariate specifications in some districts, even when outcome data were 
available. These cases, whose findings are presented in parentheses, represent even fewer dis-
tricts (sometimes only one) and thus may vary even more. 

Nevertheless, the findings in Table 9 indicate an extraordinary degree of consistency 
across grades and subjects. Consider the results for a design with no covariates. The mean esti-
mated minimum detectable effect size ranges from 0.38 to 0.40 when 40 schools are random-
ized. This implies that the mean estimated unconditional intra-class correlation, ρ, is almost 
identical for the grades and subjects being compared. Results for school-level pretests are 
equally consistent. When 40 schools are randomized, the mean minimum detectable effect size 
for Y-1 is 0.26 in all cases, and its counterpart for Y-2 ranges from 0.28 to 0.29. This implies that 
the average estimated values of R2

C are highly consistent across grades and subjects. Corre-
sponding results for student-level pretests are only slightly less consistent, ranging from 0.26 to 
0.30 for y-1 when 40 schools are randomized.  

                                                   
30In theory, it is possible that the amount of student-level variation (and thus co-variation) for the sub-

samples of low-income or low-performing schools could differ from that for the full sample. This was not the 
case for the present study.  
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Overall, then, the findings strongly suggest that, in the absence of specific data to the 
contrary for the school district or districts in which a planned study is to be conducted, the best 
guess is that randomizing 20 schools with a single school-level or student-level pretest will pro-
duce a minimum detectable effect size of about 0.38 or 0.39, randomizing 40 schools will pro-
duce a minimum detectable effect size of about 0.26 or 0.27, and randomizing 60 schools will 
produce a minimum detectable effect size of about 0.21 or 0.22. Thus, it appears that randomiz-
ing 40 to 60 schools is required in order to approach or reach the current standard of 0.20 for 
minimum detectable effect sizes.  

Table 10 presents the mean estimated minimum detectable effect sizes for the remain-
ing covariate specifications and for sub-samples of low-income schools or low-performing 
schools given 40 randomized schools. Only findings for Districts A – D are available for third 
grade and only findings for Districts A – C are available for fifth grade. Furthermore, data were 
not available from all of these districts for some covariate specifications or sub-samples of 
schools. These findings are reported in parentheses. 

Even with their smaller samples of districts the results in Table 10 exhibit a high level 
of consistency across grades and subjects. In addition, patterns of findings across covariate 
specifications and sub-samples that were reported earlier for third grade reading hold with strik-
ing regularity for the other grades and subjects.  

For example, in all cases: 

• Using a pretest improves precision dramatically. 

• The precision of a school-level pretest is as great as or greater than that for a 
student-level pretest. 

• Adding a school-level pretest for a second baseline year improves precision 
by very little. 

• Replacing a school-level pretest with another in a different subject reduces 
precision by very little. 

• Narrowing the sample of schools to a more homogeneous group with below-
average performance does not improve precision if a pretest is used as a co-
variate. 

The next question to address is: How do corresponding findings for middle schools and 
high schools compare to those for elementary schools? 
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Part III: Findings for Middle Schools and High Schools 

This section examines the likely precision of studies that randomize middle schools or 
high schools to measure the effects of educational interventions on student achievement. To do 
so it presents summary estimates of minimum detectable effect sizes for eighth grade and tenth 
grade reading and math. These estimates are computed in the same way as were those for ele-
mentary schools except they assume 250 students in a grade per school (instead of 60 for ele-
mentary schools) and they could only be estimated for Districts A and C. Detailed estimates 
comparable to those in Tables 4 – 8 for third grade reading are presented in the appendix for 
eighth grade and tenth grade reading and math. 

Table 11 presents estimated minimum detectable effect sizes for designs with no co-
variates or a single pretest given 20, 40, or 60 randomized schools. In many ways, these find-
ings are similar to those for elementary schools. For example: (1) precision without a covariate 
for secondary schools is comparable to that for elementary schools; (2) a school-level or student 
level pretest greatly improves precision for both types of schools; (3) a student-level pretest 
does not improve precision by more than does a school-level pretests for both types of schools; 
and (4) some precision is lost as the time lag between a pretest and post-test increases for both 
types of schools.  

On the other hand, there is a very important difference between the findings for middle 
schools and high schools and those for elementary schools. Specifically, pretests reduce minimum 
detectable effect sizes by proportionately much more for middle schools and high schools. Indeed 
precision with a pretest improves consistently and substantially from elementary schools to middle 
schools to high schools. This progression implies a corresponding increase in the values of R2

C. To 
see this, compare the minimum detectable effects for Y-1 in Table 11 for middle schools and high 
schools with their counterparts in Table 4 for elementary schools. As can be seen, they are largest 
for elementary schools, appreciably smaller for middle schools, and appreciably smaller yet for 
high schools. These differences are not due to the fact that elementary school findings are aver-
aged across all five districts whereas those for middle schools and high schools are averaged only 
across Districts A and C. Detailed findings in the appendix indicate that even within these two 
districts, where data for all educational levels are available, there is a pronounced reduction in 
minimum detectable effect sizes as the educational level increases.31  

Perhaps the most important feature of these findings is what they imply for the number 
of middle schools or high schools that must be randomized to attain the prevailing standard of 

                                                   
31Furthermore, having more students per grade in secondary schools than in elementary schools does not 

affect their relative precision appreciably.  
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0.20 for minimum detectable effect sizes. Recall that the findings in Table 4 indicate that 
roughly 60 elementary schools are needed to achieve this standard. But the findings in Table 11 
indicate that only about 40 middle schools or 20 high schools would be needed to do so. 

Since there are no existing distinctions between standards of precision for studies of 
secondary schools versus standards for studies of elementary schools, the present findings sug-
gest that experimental samples can be much smaller for secondary schools. On the other hand, 
there is a small but growing body of evidence which suggests that greater precision may be 
needed for secondary schools than for elementary schools. The reason for this is that develop-
mental trajectories for reading and basic math are much flatter in later grades than in early 
grades. Hence, annual gains in reading or math (in effect size) are much larger for elementary 
school students than for high school students (Bloom and Lipsey, 2005, and Kane, 2004). 
Therefore, the ability of interventions to create impacts on these outcomes (their value-added) 
might be more limited for later grades. To address this issue is well beyond the scope of the pre-
sent paper, however.32 Another factor to consider when assessing these findings that is beyond 
the scope of the present analysis is the extent to which they do or do not apply to other out-
comes that are important for secondary schools, such as measures of credits accumulated, rates 
of on-time transitions from one grade to the next (especially ninth grade to tenth grade), or 
achievement in more advanced subjects that are only taught at the secondary level. 

Table 12 presents estimates of minimum detectable effects size given 40 randomized 
schools for a broad range of covariate specifications and alternative sub-samples of schools. The 
basic pattern of findings across alternative designs roughly mirrors that for elementary schools 
in Table 10. But the magnitudes of the minimum detectable effect sizes are considerably smaller 
for middle schools than for elementary schools and considerably smaller yet for high schools 
than for middle schools. 

Table 13 provides a “bird’s eye” view of the key parameter estimates for elementary 
schools, middle schools, and high schools in order to identify what produced their similarities 
and differences in minimum detectable effect sizes. The top panel in the table reports the mean 
estimated values of the unconditional intra-class correlation (ρ) by grade, subject, and district. 
The bottom panel reports corresponding estimates of R2

C for a school-level covariate lagged one 
year (Y-1). (Values of R2

I are uniformly zero for this covariate.) A comparison of these results 
for elementary, middle, and high schools indicates why their precision is similar without a co-
variate but vastly different when a pretest is used. For this purpose it is most useful to compare 
findings for the same school district. This restricts such comparisons to Districts A and C. 

                                                   
32To do so is one of the goals of a concurrent project on “The Uses and Abuses of Effect Sizes Measures” 

being conducted by two of the present authors (Bloom and Rebeck Black) with Mark Lipsey of Vanderbilt 
University and Carolyn Hill of Georgetown University.  
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With respect to estimates of ρ, there is no clear pattern across educational levels. In Dis-
trict A the estimates are lower for secondary schools than for elementary schools, whereas in 
District C the reverse is true. On average, across districts these values are fairly similar for ele-
mentary schools and secondary schools. 

However, there are large and consistent differences in the values of R2
C across educa-

tional levels. In District A these values range from 0.31 to 0.54 for elementary schools, 0.77 to 
0.78 for middle schools, and 0.93 to 0.97 for high schools. In District C they range from 0.61 to 
0.81 for elementary schools, 0.83 to 0.91 for middle schools, and 0.91 to 0.95 for high schools. 
It is these very large differences in R2

C that produce the very large differences in minimum de-
tectable effect sizes reported earlier, which in turn produce the very large differences in the 
numbers of randomized schools needed to achieve the prevailing standard of 0.20 for minimum 
detectable effect sizes. 
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Part IV: Concluding Thoughts 

This final section addresses three questions: 

• How do the present findings compare to those in the existing literature? 

• How can one quantify the uncertainty that exists about the present findings? 

• What are the most important next steps to take for related research? 

Existing Literature 
There is a large and growing body of empirical research on the magnitudes of intra-

class correlations with respect to public health outcomes and the incidence of risk behaviors 
(smoking, drinking, drug abuse, sexual activity, etc.) in communities, firms, hospitals, group 
medical practices, schools, etc. (e.g., Murray and Blitstein, 2003, Ukoumunne et al., 1999, Sid-
diqui, et al., 1996, and Murray and Short, 1995). The intra-class correlations for these clusters 
and outcomes are much smaller than those for measures of student achievement within schools. 
Typically, they range from about 0.01 to 0.05 and only occasionally to 0.10. Thus, although im-
portant, the loss of statistical precision caused by randomizing clusters for evaluations in these 
domains is much less than that for evaluations in the domain considered by the present paper. 

In the present domain there are only a few studies that focus empirically on the parame-
ters that determine precision: Hedberg, Santana, and Hedges (2004), Schochet (2005), Gargani 
and Cook (forthcoming), and Bloom, Bos, and Lee (1999).  

Hedberg, Santana, and Hedges (2004) report on an ongoing project to construct a “vari-
ance almanac” using data from three large national databases: the National Education Longitu-
dinal Study, the Early Childhood Longitudinal Study, and the Prospects Study. Their findings 
comprise estimates of intra-class correlations for standardized test scores of students within 
schools for the U.S. as a whole, for the Midwest, Northeast, South, and West regions, and for 
schools within these regions that are located in urban, suburban, or rural areas. Estimates of in-
tra-class correlations without covariates and with covariates that control for student gender and 
race/ethnicity are presented. These estimates are reported for reading and math tests in kinder-
garten and grades 1, 3, 8, and 10. 

The authors present a large number of estimated intra-class correlations that vary 
widely in their magnitudes. One important feature of these findings is that intra-class correla-
tions for urban schools are consistently higher than those for suburban or rural schools. Within 
the study’s samples of urban schools, the overwhelming majority of estimated unconditional 
intra-class correlations range from about 0.15 to 0.30. However, because these intra-class corre-
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lations include school differences across districts, they are not directly comparable to those re-
ported in the present paper for schools within districts. Furthermore, estimates of the explana-
tory power of the demographic covariates are not reported, and the data used do not make it 
possible to assess the predictive power of pretests. Thus, no direct comparisons are possible for 
these parameters. 

Schochet (2005) presents a summary of findings from past empirical studies of intra-
class correlations for achievement outcomes for students within schools plus results based on 
new tabulations of data from three evaluation studies: (1) the Longitudinal Evaluation of School 
Change and Performance, representing 71 Title I (low-income) elementary schools from 18 dis-
tricts in seven states (for reading and math achievement in grades 3, 4, and 5); (2) an evaluation 
of Teach for America, representing 17 elementary schools in six cities (for reading and math 
achievement in grades 2, 3, and 4); and (3) an evaluation of the 21st Century Community Learn-
ing Centers Program, representing 30 elementary schools in 12 districts (for reading and math 
achievement in grades 1, 3, and 5). Estimates from the first database indicate that adjustments 
for district effects reduce intra-class correlations substantially. This suggests that using the Hed-
berg, Santana, and Hedges (2004) findings to predict intra-class correlations for schools within 
districts might overstate their magnitudes appreciably. Adjustments for district effects are not 
reported for the other two databases. 

Based on the findings surveyed and presented, Schochet concludes that “the examined 
data sources suggest that values for ρ1 (what we refer to as the unconditional intra-class correla-
tion within a district) often range from .10 to .20 for standardized test scores.” He also con-
cludes that “our analysis indicated that R2

BS and R2
W values (what we refer to as R2

C and R2
I, 

respectively) were at least .50 in regression models that included student-level baseline test 
scores as explanatory variables.” 

Bloom, Bos, and Lee (1999) present findings from a study of reading and math test 
scores in grades 3 and 6 for 25 elementary schools from Rochester, New York, during two 
years. Seven of the eight estimated intra-class correlations from their analysis range between 
0.14 and 0.21; one equals 0.08. The authors test the ability of numerous covariate specifications, 
including school-level and student-level pretests, to increase precision. These findings are in-
cluded as part of the present paper. 

Gargani and Cook (forthcoming) analyze reading scores for a single grade (not speci-
fied) in one year for 88 elementary schools from Louisville, Kentucky. They estimate the un-
conditional intra-class correlation to be 0.11, which is well on the low side of findings from 
other research. When they control statistically for a single school-level pretest, they obtain an 
R2

C equal to 0.85, which is well on the high side of findings for elementary schools from other 
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research. Based on these results, the authors conclude that randomizing only 22 elementary 
schools could produce a minimum detectable effect size of 0.20. 

The overall results for elementary schools from the present paper are generally consis-
tent (to the limited extent that they can be compared) with those from Hedberg, Santana and 
Hedges (2004), Schochet (2005), and Bloom, Bos, and Lee (1999). They suggest that, on aver-
age, using data for a school-level or a student-level pretest and randomizing about 60 elemen-
tary schools can produce a minimum detectable effect size of 0.20. This differs substantially 
from the conclusion of Gargani and Cook (1999). 

Findings from the present study for middle schools and high schools have (to our 
knowledge) no direct counterparts in the existing literature. These findings, as noted earlier, 
suggest that, on average, randomizing about 40 middle schools or 20 high schools and using 
data for a pretest can produce a minimum detectable effect size of 0.20. 

All of the findings in the present study and the existing literature reflect estimates that 
vary across school districts and years. To a certain extent this variation reflects random estima-
tion error, which in theory could be removed if larger and larger samples were used to provide 
estimates. (Although in practice there are limits to what is possible in this regard.)33 But it is also 
likely that this variation represents real differences across school districts in which evaluation 
studies will be conducted. Thus, in some districts it might be possible to achieve a minimum 
detectable effect size of 0.20 by using a pretest and randomizing only 22 elementary schools. 
But in other districts (most other districts according to the bulk of existing research) three or 
more times as many schools are required to do so.  

Thus, there will always be uncertainty about the precision for a given study as it is be-
ing planned. Part of this uncertainty arises when parameter estimates from one set of districts 
are used to plan a study for other districts, which may not have the same variance structure. And 
part of this uncertainty reflects changes over time in the variance structure of a given district. 
The following section takes a first step toward quantifying this uncertainty. 

Quantifying Uncertainty 
One approach to quantifying the uncertainty that exists when using results from the pre-

sent study — or any other collection of such findings — to predict the precision of a future 
evaluation is to report the approximate sampling distribution of minimum detectable effect sizes 
                                                   

33Closed-form approximations exist for the variance of the estimate of an intra-class correlation (e.g., Sid-
diqui et al., 1996) as do expressions for the variance of an estimated correlation or R2. But a simulation would 
be required to estimate the variance of an estimated minimum detectable effect size, which is a non-linear 
combination of these parameters.  
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for a given sample size and covariate that is represented by the findings. To illustrate the ap-
proach, we apply it to selected results for third grade reading and math.  

Recall that Table 4 and Appendix Table A1 summarize estimates of minimum detect-
able effect sizes for third grade reading and math. These findings reflect parameter estimates 
from five school districts for multiple years. For example, with a school-level covariate lagged 
one year (Y-1) and 20 randomized schools (J = 20), there are separate estimates for two years 
from Districts A, C, and E and separate estimates for six years for Districts B and D. These 18 
estimates approximate the sampling distribution of actual minimum detectable effect sizes from 
a population of districts and years.  

The first step in identifying this sampling distribution to use a two-level hierarchical 
model (for years grouped by district) to estimate the population mean minimum detectable ef-
fect size (MMDES), the between-district variance of the minimum detectable effect size 
(τ 2

MDES ), and the within-district variance of the minimum detectable effect size (σ 2
MDES ). The 

mean of the implied sampling distribution is thus MMDES, and its standard deviation 
is στ 22

MDESMDES + . Assuming for convenience that the sampling distribution approximates 
normality, then it is straightforward to compute the 10th, 25th, 50th, 75th, and 90th percentile val-
ues of the minimum detectable effect size that are implied by the 18 estimates for a given sam-
ple size and covariate.34  

Table 14 displays this information for reading and math given 20, 40, or 60 randomized 
schools (J = 20, 40, or 60) and a school-level pretest (Y-1) or a student-level pretest (y-1). Con-
sider the findings for reading with a school-level pretest and 60 randomized schools. The 10th 
percentile minimum detectable effect size from the implied sampling distribution for this design 
equals 0.13. This means that a study based on data from a random district and year drawn from 
this distribution would face a 10 percent chance of having a true minimum detectable effect size 
equal to or less than 0.13. The other end of the sampling distribution (its 90th percentile) indi-
cates that the study would also face a 10 percent chance of having a minimum detectable effect 
size equal to or greater than 0.29. Hence, the study faces an 80 percent chance of having a 
minimum detectable effect size between 0.13 and 0.29. Similar comparisons can be made from 
the table using the implied 25th and 75th percentile values of the minimum detectable effect size 
(its inter-quartile range), its implied 50th percentile value (median), or other combinations of 
percentiles. Presenting the information in this way can provide a sense of both the central ten-
dency of estimates of minimum detectable effects sizes and their likely variation across studies. 

                                                   
34The 10th, 25th, 50th, 75th, and 90th percentile values are as follows, respectively:  

στ 2228.1 MDESMDESMMDES +− , στ 2267.0 MDESMDESMMDES +− , MMDES, στ 2267.0 MDESMDESMMDES ++ , 

στ 2228.1 MDESMDESMMDES ++ . 
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Next Steps 
Previous research has established that adding a covariate adjustment — especially for 

pretests — to a cluster-randomized study can often markedly improve its precision. The present 
paper presents a framework for exploring this process by identifying the three empirical pa-
rameters (ρ, R2

C, and R2
I) that determine precision when a covariate is used. In addition, the pa-

per begins to develop a systematic inventory of values for these parameters when the unit of 
random assignment is an elementary school, middle school, or high school and the outcome of 
interest is student achievement. There are three important directions in which to expand this 
research: to additional school districts, to other types of educational outcomes, and to other units 
of randomization. 

Current estimates of ρ, R2
C, and R2

I for student achievement measures clustered within 
schools are available for only a few school districts. Thus replication of these estimates for other 
districts is necessary to more fully understand their distribution across districts, years, grades, sub-
jects, and sub-samples of schools. Perhaps the best source of this additional information in the 
next several years is the series of large-scale, multi-site, school-randomized studies currently being 
sponsored by the U.S. Department of Education’s Institute of Educational Sciences. Hence, it is 
important these studies report the values of ρ, R2

C, and R2
I that underlie their findings. Another 

potentially valuable source of such information is studies that could be commissioned using ex-
tensive data that now exist in several states for individual student outcomes at all schools.35 

A second important direction in which to expand the present analysis is to replicate it for 
other types of educational outcomes. For example, high school reforms often focus on improving 
rates of student attendance, promotion, credit accumulation, and graduation (as well as their per-
formance on standardized tests). Thus knowledge of the intra-class correlations and predictive 
power of covariates for these outcome measures could be invaluable for designing evaluations of 
these reforms. In addition, some educational initiatives are designed to improve social and emo-
tional outcomes for students (e.g., Aber, et al., 1999), so knowledge of the empirical parameters 
for these outcomes is important for designing future evaluations of such initiatives.  

A third important direction in which to expand the present analysis is to replicate it for 
other units of randomization. For example, randomizing classrooms within schools can provide 
much greater precision than randomizing schools because multiple classrooms would be ran-
domized per school. Thus, for educational interventions where it is logistically and politically 
feasible to randomize at this lower level of aggregation and for which it is possible to prevent 
“spillovers” between treatment and control classrooms, this approach could greatly reduce the 

                                                   
35See Bifulco and Ladd (2005) for a description of these data for North Carolina and Hanushek, Kain, and 

Rivkin (2001) for a description of these data for Texas.  



 38

number of schools needed (and thus costs) of evaluations. However, little is known about ρ, 
R2

C, and R2
I for student outcomes clustered within classrooms within schools.36  

In addition, there is a large and growing interest in evaluating educational programs that 
take place in settings other than schools, such as child care centers (especially Head Start cen-
ters), after-school programs, or pre-school programs. Thus, knowledge of the planning parame-
ters for the relevant outcome measures and units of randomization for these studies is also an 
important needed addition to the current empirical repertoire.37 

It is clear then that although recent advances in cluster-randomized studies for measur-
ing the impacts of educational interventions have been considerable, there is much more to be 
learned about how to improve these designs. And it is equally clear what some of the next steps 
should be for informing these improvements. 

                                                   
36Schochet (2005) presents an estimate of 0.16 for the intra-class correlation of student test scores within 

classrooms within schools based on data for low-income schools from two evaluation studies.  
37Schochet (2005) presents estimates of these parameters for pre-schools. 
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Table 1

How Minimum Detectable Effect Size Varies with ρ, R2
C, and R2

I

(Given J = 40, n = 60, and P = 0.5)

0.0 0.2 0.4 0.6 0.8

0.0 0.31 0.28 0.25 0.21 0.17
0.2 0.30 0.28 0.24 0.21 0.16
0.4 0.30 0.27 0.24 0.20 0.15
0.6 0.30 0.27 0.23 0.20 0.15
0.8 0.29 0.26 0.23 0.19 0.14

0.0 0.37 0.33 0.29 0.25 0.19
0.2 0.37 0.33 0.29 0.24 0.19
0.4 0.36 0.33 0.29 0.24 0.18
0.6 0.36 0.32 0.28 0.23 0.17
0.8 0.36 0.32 0.28 0.23 0.16

0.0 0.42 0.38 0.33 0.28 0.21
0.2 0.42 0.38 0.33 0.27 0.20
0.4 0.42 0.37 0.33 0.27 0.20
0.6 0.41 0.37 0.32 0.27 0.19
0.8 0.41 0.37 0.32 0.26 0.19

Using Covariates to Improve Precision

ρ = 0.2

R2
I

R2
C

ρ = 0.10

ρ = 0.15

NOTE: Minimum detectable effects are defined for 80 percent power, 0.05 significance, and a two-tail 
test. Multiplying them by 0.88 creates their counterparts for a one-tail test. 
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Table 2 
 

Research Design Questions Addressed  
by the Present Analysis 

 
 
Core Questions 
 

1. How precise are estimates of intervention effects on student achievement for studies 
that randomize schools and control statistically for a pretest? How does the answer to 
this question differ for school-level versus student-level pretests? 

2. By how much does precision vary across follow-up years as the gap in time between 
baseline and follow-up test results increases? 

3. By how much does precision differ for reading and math outcomes? 
4. By how much does precision differ for elementary schools, middle schools, or high 

schools? 
5. By how much does precision vary across school districts? 
6. By how much does precision vary across years in the same school district? 
 
 

Further Questions 
 

1. By how much is precision improved through the addition of a pretest for a second 
baseline year? 

2. By how much is precision improved through the combined use of a school-level and a 
student-level pretest? 

3. How much precision exists if demographic characteristics only are used as covariates? 
4. By how much is precision improved if demographic characteristics are added to a 

baseline pretest as covariates? 
5. By how much is precision reduced if the test used to measure baseline outcomes differs 

from that used to measure follow-up outcomes? 
6. How is precision affected if the sample of schools is limited to those with high 

concentrations of students from low-income families (who receive subsidized meals) 
during the baseline period? 

7. How is precision affected if the sample of schools is limited to those with especially 
poor student performance during the baseline period? 
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A B C D E
Elementary schools (Grade 3)

Average number of students 75 57 69 64 66

Average number of schools 68 88 168 48 25

Average student age 8 8 8 8 NA

Student race/ethnicity (%)
Black 89 59 42 72 NA
White 7 36 10 6 NA
Hispanic 3 2 45 21 NA
Asian 1 2 3 0 NA
Other 0 0 0 1 NA

Student gender (%)
Male 51 51 51 49 NA
Female 49 49 49 51 NA

Low-income students (%) 79 66 41 NA NA

Middle schools (Grade 8)
Average number of students 196 NA 297 NA NA

Average number of schools 17 NA 41 NA NA

Average student age 13 NA 13 NA NA

Student race/ethnicity (%)
Black 93 NA 35 NA NA
White 4 NA 8 NA NA
Hispanic 2 NA 54 NA NA
Asian 1 NA 3 NA NA
Other 0 NA 0 NA NA

NA
Student gender (%)

Male 48 NA 50 NA NA
Female 52 NA 50 NA NA

Low-income students (%) 68 NA 38 NA NA

Using Covariates to Improve Precision

Table 3

School and Student Characteristics by Grade and District

Grade and characteristics
District

(continued)
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A B C D E

High schools (Grade 10)
Average number of students 234 NA 269 NA NA

Average number of schools 11 NA 32 NA NA

Average student age 15 NA 16 NA NA

Student race/ethnicity (%)
Black 93 NA 40 NA NA
White 5 NA 10 NA NA
Hispanic 1 NA 47 NA NA
Asian 1 NA 3 NA NA
Other 0 NA 0 NA NA

Student gender (%)
Male 46 NA 49 NA NA
Female 54 NA 51 NA NA

Low-income students (%) 61 NA 31 NA NA

Grade and characteristics
District

Table 3 (continued)

NOTES:  Low-income students are defined as those students receiving free lunch, except in District B 
where they are defined as those identified by the district as being economically disadvantaged.  

District A's 3rd and 8th grade averages are based on the 1998-99 and 1999-00 school years.  The 10th 
grade averages are based on the 1996-97 and 1997-98 school years. 

District B's 3rd grade averages are based on the 1997-98 through 2002-03 school years. The 10th grade 
averages are based on the 2000-01 and 2001-02 school years.

District C's averages are based on the 2001-02 and 2002-03 school years. 

District D's averages are based on the 1993-94 through 1998-99 school years. Data on free lunch status 
was not available to identify low-income students.
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Table 4 

Grade 3 Reading

Minimum Detectable Effect Size (MDES) 
by Number of Randomized Schools (J) and Single Covariate

A B C D E Mean

No covariate 0.61 0.54 0.59 0.63 0.47 0.57
   Y-1 0.52 0.29 0.33 0.46 0.27 0.37
   Y-2 0.54 0.35 0.38 0.52 0.24 0.40
   Y-3 NA 0.36 0.39 0.55 NA (0.43)
    y-1 0.52 0.29 0.32 0.53 0.25 0.38
    y-2 0.55 NA 0.38 NA 0.25 (0.39)
    y-3 NA NA NA NA NA NA

No covariate 0.42 0.37 0.41 0.44 0.33 0.39
   Y-1 0.36 0.20 0.23 0.31 0.19 0.26
   Y-2 0.37 0.24 0.26 0.36 0.17 0.28
   Y-3 NA 0.24 0.27 0.38 NA (0.30)
    y-1 0.35 0.20 0.22 0.36 0.18 0.26
    y-2 0.38 NA 0.26 NA 0.18 (0.27)
    y-3 NA NA NA NA NA NA

No covariate 0.34 0.30 0.33 0.35 0.27 0.32
   Y-1 0.29 0.16 0.18 0.25 0.16 0.21
   Y-2 0.30 0.19 0.21 0.29 0.14 0.23
   Y-3 NA 0.20 0.22 0.30 NA (0.24)
    y-1 0.29 0.16 0.18 0.29 0.14 0.21
    y-2 0.31 NA 0.21 NA 0.15 (0.22)
    y-3 NA NA NA NA NA NA

Using Covariates to Improve Precision

MDES(J=40)

MDES(J=60)

Covariate
Findings for District

MDES(J=20)

NOTES: In the last column, means in parenthesis indicate that the reported values do not include the values from all 
five districts.  Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three years, 
respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three years, respectively. Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students per school, 
and a balanced (50/50) allocation of schools to treatment and control status. Entries are computed using the mean of 
the corresponding district-level parameters.  See Table 7 for these parameters.  

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school 
and 68 schools, on average.  District B's outcomes are based on tests administered in spring 1998 through spring 
2003, with 57 students per school and 89 schools, on average.  District C's outcomes are based on tests administered 
in spring 2002 and spring 2003, with 69 students per school and 169 schools, on average.  District D's outcomes are 
based on tests administered in spring 1994 through spring 1999, with 65 students per school and 48 schools, on 
average.  District E's outcomes are taken from Table 4 of Bloom, Bos, and Lee (1999).
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Table 5 

Grade 3 Reading

Minimum Detectable Effect Size for 40 Randomized Schools with
Alternative Samples of Schools and Covariates

(Excluding District E)

A B C D Mean
All schools
No covariate 0.42 0.37 0.41 0.44 0.41
 Y-1 0.36 0.20 0.23 0.31 0.27
 Y-1,Y-2 0.35 0.19 0.22 0.31 0.27
 y-1 0.35 0.20 0.22 0.36 0.28
 y-1,y-2 0.35 NA 0.21 NA (0.28)
 Y-1,y-1 0.34 0.17 0.19 0.31 0.25
 Z-1 0.35 0.22 0.28 0.32 0.29
 z-1 0.37 0.24 0.28 0.34 0.31
 X 0.35 0.29 0.27 NA (0.31)
 X,Y-1 0.32 0.19 0.21 NA (0.24)
 X,y-1 0.33 0.19 0.20 NA (0.24)
Low-income schools
 Y-1 0.36 0.21 0.26 NA (0.27)
 y-1 0.36 0.20 0.24 NA (0.26)
Low-achieving schools
 Y-1 0.34 0.22 0.23 0.30 0.27
 y-1 0.34 0.21 0.19 0.35 0.27

(continued)

School sample and covariates
Findings for District

Using Covariates to Improve Precision

NOTES: In the last column, means in parenthesis indicate that the reported values do not include the values from 
all four districts.Y-1 and Y-2 are mean school scores for the same grade lagged one and two years, respectively. y-1 

and y-2 are individual student scores lagged one and two years, respectively.  Z-1 and z-1 are mean school scores 
and individual scores in the previous year for a different test (with a math test as the pretest for reading outcomes 
and a reading test as the pretest for math outcomes). X is a vector of demographic characteristics, which differs 
across districts. Low-income schools are defined as those whose average proportion of students eligible for free 
lunch exceeds the district average.  Low-achieving schools in the district are defined as those whose average 
combined sum of reading and math pretest scores were lower than the corresponding district average. Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students per school, 
and a balanced (50/50) allocation of schools to treatment and control status. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school 
and 68 schools, on average.  The low-income sample outcomes are based on data consisting of 76 students and 49 
schools, on average.  The low-achieving sample outcomes are based on data consisting of 71 students and 35 
schools, on average.
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Table 5 (continued)

District B's outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per 
school and 89 schools, on average.  Low-income schools in District B are defined as those identified by the 
district as being economically disadvantaged.  The low-income sample outcomes are based on data consisting of  
58 students and 48 schools, on average. The low-achieving sample outcomes are based on data consisting of 57 
students and 43 schools, on average. 

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 69 students per school 
and 169 schools, on average.  The low-income sample outcomes are based on data consisting of 62 students per 
school and 129 schools, on average. The low-achieving sample outcomes are based on data consisting of 59 
students per school and 76 schools, on average.

District D's outcomes are based on tests administered in spring 1994 through spring 1999, with 65 students per 
school and 48 schools, on average.  The low-achieving sample outcomes are based on data consisting of 61 
students per school and 23 schools, on average.  Data on free lunch status was not available to identify low-
income schools.
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(min, max) (min, max) (min, max) (min, max) (min, max)
All schools
 Y-1 (0.34, 0.37) (0.18, 0.22) (0.21, 0.24) (0.27, 0.35) (0.18, 0.20)
 y-1 (0.34, 0.37) (0.17, 0.22) (0.19, 0.25) (0.33, 0.44) (0.16, 0.19)
Low-income schools
 Y-1 (0.33, 0.39) (0.19, 0.24) (0.24, 0.27) NA NA NA NA
 y-1 (0.34, 0.37) (0.18, 0.23) (0.21, 0.27) NA NA NA NA
Low-achieving schools
 Y-1 (0.31, 0.37) (0.20, 0.25) (0.22, 0.24) (0.21, 0.36) NA NA
 y-1 (0.32, 0.35) (0.18, 0.25) (0.18, 0.20) (0.25, 0.45) NA NA

School sample and covariate
Findings for District

A B C D E

Alternative Samples of Schools and Selected Covariates

Using Covariates to Improve Precision

Table 6 

Minimum Detectable Effect Size Ranges for 40 Randomized Schools with

Grade 3 Reading

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1is the individual student score 
lagged one year. Low-income schools are defined as those whose average proportion of students eligible for free 
lunch exceeds the district average.  Low-achieving schools in the district are defined as those whose average 
combined sum of reading and math pretest scores were lower than the corresponding district average. Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students per school, and
a balanced (50/50) allocation of schools to treatment and control status.  

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school 
and 68 schools, on average. The low-income sample outcomes are based on data consisting of 76 students and 49 
schools, on average. The low-achieving sample outcomes are based on data consisting of 71 students and 35 schools,
on average.

District B's outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per schoo
and 89 schools, on average. Low-income schools in District B are defined as those identified by the district as being 
economically disadvantaged. The low-income sample outcomes are based on data consisting of  58 students and 48 
schools, on average. The low-achieving sample outcomes are based on data consisting of 57 students and 43 schools,
on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 69 students per school and
169 schools, on average. The low-income sample outcomes are based on data consisting of 62 students per school 
and 129 schools, on average. The low-achieving sample outcomes are based on data consisting of 59 students per 
school and 76 schools, on average.

District D's outcomes are based on tests administered in spring 1994 through spring 1999, with 65 students per schoo
and 48 schools, on average. The low-achieving sample outcomes are based on data consisting of 61 students per 
school and 23 schools, on average. Data on free lunch status was not available to identify low-income schools.

District E's outcomes are taken from Table 4 of Bloom, Bos, and Lee (1999).



 

Table 7 

Grade 3 Reading

Parameter Values for Selected Covariates

R2
C R2

I R2
C R2

I R2
C R2

I R2
C R2

I R2
C R2

I

Y-1 0.31 0.00 0.77 0.00 0.74 0.00 0.51 0.00 0.75 0.00
Y-2 0.25 0.00 0.63 0.00 0.64 0.00 0.35 0.00 0.81 0.00
Y-3 NA NA 0.62 0.00 0.60 0.00 0.27 0.00 NA NA
Y-1, Y-2 0.35 0.00 0.79 0.00 0.76 0.00 0.53 0.00 0.89 0.00
Y-2, Y-3 NA NA 0.71 0.00 0.68 0.00 0.39 0.00 NA NA

y-1 0.30 0.22 0.73 0.40 0.73 0.46 0.31 0.30 0.73 0.52
y-2 0.18 0.12 NA NA 0.62 0.30 NA NA 0.73 0.31
y-3 NA NA NA NA NA NA NA NA NA NA
y-1, y-2 0.33 0.26 NA NA 0.75 0.48 NA NA 0.78 0.54
y-2, y-3 NA NA NA NA NA NA NA NA NA NA

Y-1, y-1 0.37 0.22 0.83 0.40 0.80 0.46 0.51 0.30 NA NA
Z-1 0.34 0.00 0.71 0.00 0.58 0.00 0.48 0.00 NA NA
z-1 0.25 0.15 0.60 0.25 0.56 0.28 0.39 0.20 NA NA
X 0.30 0.08 0.40 0.07 0.58 0.23 NA NA NA NA
X, Y-1 0.43 0.08 0.79 0.07 0.78 0.23 NA NA NA NA
X, y-1 0.40 0.25 0.78 0.42 0.77 0.50 NA NA NA NA

(continued)

0.19 0.22 0.16

Covariates
Parameters for District

A B C D E

Using Covariates to Improve Precision

Other covariates

Proportion of variance reduced (R2
C and R2

I)

School-level pretests only

Student-level pretests only

Intra-class correlation with no covariates (ρ)
0.20 0.15

53 



 

Table 7 (continued)

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three years, respectively. y-1, y-2, and y-3 are individual student 
scores lagged one, two, and three years, respectively. X is a vector of demographic characteristics, which differs across districts. Z-1 and z-1 are mean school 
scores and individual scores in the previous year for a different test (with a math test as the pretest for reading outcomes and a reading test as the pretest for 
math outcomes). R2

C and R2
I are the average proportion of the school-level variance and the student-level variance reduced by the covariates, respectively.  

The averages are computed as the mean of the corresponding district-level parameters. Nonzero estimates for R2
I  with school-level covariates only are set 

equal to zero.  See text for more details. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school and 68 schools, on average. District B's 
outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per school and 89 schools, on average. District C's outcomes 
are based on tests administered in spring 2002 and spring 2003, with 69 students per school and 169 schools, on average.  District D's outcomes are based on 
tests administered in spring 1994 through spring 1999, with 65 students per school and 48 schools, on average.  District E's outcomes are taken from 
unpublished tables of Bloom, Bos, and Lee (1999).
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Table 8 

Grade 3 Reading

Parameter Ranges for Alternative School Samples and Selected Covariates

(min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max)
All schools

ρ (0.19, 0.21) (0.13, 0.17) (0.18, 0.19) (0.18, 0.25) (0.14, 0.18)

R2
C (0.25, 0.36) (0.27, 0.33) (0.70, 0.86) (0.66, 0.82) (0.71, 0.78) (0.66, 0.80) (0.26, 0.60) (0.11, 0.45) (0.73, 0.76) (0.71, 0.75)

R2
I (0.00, 0.00) (0.21, 0.24) (0.00, 0.00) (0.36, 0.46) (0.00, 0.00) (0.45, 0.47) (0.00, 0.00) (0.24, 0.36) (0.00, 0.00) (0.48, 0.55)

ρ (0.14, 0.18) (0.05, 0.07) (0.09, 0.11) NA NA NA NA

R2
C (0.07, 0.16) (0.08, 0.13) (0.08, 0.51) (0.09, 0.50) (0.32, 0.40) (0.31, 0.51) NA NA NA NA NA NA NA NA

R2
I (0.00, 0.00) (0.18, 0.21) (0.00, 0.00) (0.31, 0.44) (0.00, 0.00) (0.41, 0.43) NA NA NA NA NA NA NA NA

ρ (0.11, 0.16) (0.05, 0.08) (0.05, 0.07) (0.07, 0.16) NA NA

R2
C (0.03, 0.11) (-0.03, 0.12) (0.15, 0.56) (0.03, 0.55) (0.05, 0.21) (0.39, 0.39) (-0.06, 0.51) (-0.59, 0.24) NA NA NA NA

R2
I (0.00, 0.00) (0.19, 0.25) (0.00, 0.00) (0.31, 0.43) (0.00, 0.00) (0.42, 0.43) (0.00, 0.00) (0.26, 0.40) NA NA NA NA

(continued)

Y-1

School 
sample and 
parameters

Parameters for District

A B C D E

(same for all 
models)

Covariate
Y-1 y-1 Y-1 y-1 Y-1 y-1 Y-1 y-1

(same for all 
models)

(same for all 
models)

Low-achieving schools

Low-income schools
(same for all 

models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

Using Covariates to Improve Precision

(same for all 
models)

(same for all 
models)

y-1

(same for all 
models)

(same for all 
models)

(same for all 
models)

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual student score lagged one year. ρ is the intra-class correlation for 
students within schools. R2

C and R2
I are the proportions of the school-level variance and the student-level variance reduced by the covariates, respectively.  Nonzero 

estimates for R2
I  with school-level covariates only are set equal to zero.  See text for more details.  Low-income schools are defined as those whose average 

proportion of students eligible for free lunch exceeds the district average.  Low-achieving schools in the district are defined as those whose average combined 
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Table 8 (continued)
sum of reading and math pretest scores were lower than the corresponding district average.   

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school and 68 schools, on average.  The low-income 
sample outcomes are based on data consisting of 76 students and 49 schools, on average.  The low-achieving sample outcomes are based on data consisting of 71 
students and 35 schools, on average.

District B's outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per school and 89 schools, on average.  Low-income 
schools in District B are defined as those identified by the district as being economically disadvantaged.  The low-income sample outcomes are based on data 
consisting of  58 students and 48 schools, on average. The low-achieving sample outcomes are based on data consisting of 57 students and 43 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 69 students per school and 169 schools, on average.  The low-income 
sample outcomes are based on data consisting of 62 students per school and 129 schools, on average. The low-achieving sample outcomes are based on data 
consisting of 59 students per school and 76 schools, on average.

District D's outcomes are based on tests administered in spring 1994 through spring 1999, with 65 students per school and 48 schools, on average.  The low-
achieving sample outcomes are based on data consisting of 61 students per school and 23 schools, on average. Data on free lunch status was not available to 
identify low-income schools.

District E's outcomes are taken from unpublished tables of Bloom, Bos, and Lee (1999).
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Table 9 

Elementary School

Average Minimum Detectable Effect Size (MDES) 
by Number of Randomized Schools (J) and Single Covariate

Reading Math Reading Math

No covariate 0.57 0.58 0.56 0.57
   Y-1 0.37 0.37 0.38 0.38
   Y-2 0.40 0.42 0.40 0.41
   Y-3 (0.43) (0.47) (0.36) (0.44)
    y-1 0.38 0.43 0.40 0.39
    y-2 (0.39) (0.45) 0.36 0.38
    y-3 NA NA (0.61) (0.50)

No covariate 0.39 0.40 0.38 0.39
   Y-1 0.26 0.26 0.26 0.26
   Y-2 0.28 0.29 0.28 0.28
   Y-3 (0.30) (0.32) (0.25) (0.30)
    y-1 0.26 0.30 0.27 0.27
    y-2 (0.27) (0.31) 0.25 0.27
    y-3 NA NA (0.42) (0.34)

No covariate 0.32 0.32 0.31 0.32
   Y-1 0.21 0.21 0.21 0.21
   Y-2 0.23 0.23 0.22 0.23
   Y-3 (0.24) (0.26) (0.20) (0.24)
    y-1 0.21 0.24 0.22 0.22
    y-2 (0.22) (0.25) 0.20 0.22
    y-3 NA NA (0.34) (0.28)

Using Covariates to Improve Precision

MDES(J=20)

MDES(J=40)

MDES(J=60)

Covariate
Findings by Grade and Subject

Third Grade Fifth Grade

NOTES: Means in parenthesis indicate that the reported values do not include the values from 
all districts.  Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and 
three years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three 
years, respectively. Findings reflect: statistical significance of 0.05, statistical power of 0.80, a 
two-tail hypothesis test, 60 students per school, and a balanced (50/50) allocation of schools to 
treatment and control status. Entries are computed using the mean of the corresponding district-
level outcomes.  See Table 4 for these outcomes and sample sizes for third grade reading and 
Appendix Tables A1, A6, and A11 for third grade math, fifth grade reading, and fifth grade 
math, respectively.  
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Table 10 

Elementary School

Average Minimum Detectable Effect Size for 40 Randomized Schools with
Alternative Samples of Schools and Covariates

Reading Math Reading Math

All schools
No covariate 0.41 0.41 0.42 0.41
 Y-1 0.27 0.28 0.29 0.28
 Y-1,Y-2 0.27 0.27 0.28 0.26
 y-1 0.28 0.30 0.33 0.30
 y-1,y-2 (0.28) (0.29) 0.28 0.26
 Y-1,y-1 0.25 0.26 0.30 0.27
 Z-1 0.29 0.28 0.32 0.28
 z-1 0.31 0.30 0.33 0.30
 X (0.31) (0.31) 0.32 0.31
 X,Y-1 (0.24) (0.24) 0.26 0.25
 X,y-1 (0.24) (0.25) 0.31 0.28
Low-income schools
 Y-1 (0.27) (0.27) 0.29 0.29
 y-1 (0.26) (0.27) 0.31 0.32
Low-achieving schools
 Y-1 0.27 0.28 0.30 0.30
 y-1 0.27 0.30 0.35 0.34

Using Covariates to Improve Precision

School sample and covariates
Findings by Grade and Subject

Third Grade Fifth Grade

NOTES: Means in parenthesis indicate that the reported values do not include the values from all districts.  Y-

1 and Y-2 are mean school scores for the same grade lagged one and two years, respectively. y-1, and y-2 are 
individual student scores lagged one and two years, respectively.  Z-1 and z-1 are mean school scores and 
individual scores in the previous year for a different test (with a math test as the pretest for reading outcomes 
and a reading test as the pretest for math outcomes). X is a vector of demographic characteristics, which 
differs across districts. Low-income schools are defined as those whose average proportion of students 
eligible for free lunch exceeds the district average.  Low-achieving schools in the district are defined as those 
whose average combined sum of reading and math pretest scores were lower than the corresponding district 
average. Findings reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 
60 students per school, and a balanced (50/50) allocation of schools to treatment and control status. 
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Table 11 

Middle School and High School

Average Minimum Detectable Effect Size (MDES) 
by Number of Randomized Schools (J) and Single Covariate

Reading Math Reading Math

No covariate 0.61 0.61 0.62 0.58
   Y-1 0.24 0.28 0.16 0.16
   Y-2 0.30 0.35 0.24 0.21
   Y-3 (0.28) 0.37 (0.26) (0.29)
    y-1 0.28 0.28 0.15 0.23
    y-2 0.27 0.33 (0.25) 0.26
    y-3 (0.25) 0.36 (0.25) (0.30)

No covariate 0.42 0.42 0.42 0.40
   Y-1 0.17 0.19 0.11 0.11
   Y-2 0.20 0.24 0.16 0.15
   Y-3 (0.19) 0.25 (0.18) (0.20)
    y-1 0.19 0.19 0.10 0.15
    y-2 0.19 0.22 (0.17) 0.18
    y-3 (0.17) 0.24 (0.17) (0.21)

No covariate 0.34 0.34 0.34 0.32
   Y-1 0.13 0.15 0.09 0.09
   Y-2 0.16 0.20 0.13 0.12
   Y-3 (0.15) 0.20 (0.14) (0.16)
    y-1 0.15 0.16 0.08 0.12
    y-2 0.15 0.18 (0.14) 0.14
    y-3 (0.14) 0.20 (0.14) (0.17)

Using Covariates to Improve Precision

MDES(J=20)

MDES(J=40)

MDES(J=60)

Covariate
Findings by Grade and Subject

Eighth Grade Tenth Grade

NOTES: Means in parenthesis indicate that the reported values do not include the values from 
all districts. Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and 
three years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three 
years, respectively. Findings reflect: statistical significance of 0.05, statistical power of 0.80, a 
two-tail hypothesis test, 250 students per school, and a balanced (50/50) allocation of schools to 
treatment and control status. Entries are computed using the mean of the corresponding district-
level outcomes.  See Appendix Tables A16, A21, A26, and A31 for these outcomes and sample 
sizes for eighth and tenth grade reading and math.  
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Table 12 

Middle School and High School

Average Minimum Detectable Effect Size for 40 Randomized Schools with
Alternative Samples of Schools and Covariates

Reading Math Reading Math

All schools
No covariate 0.42 0.42 0.42 0.40
 Y-1 0.17 0.19 0.11 0.11
 Y-1,Y-2 0.16 0.19 0.11 0.10
 y-1 0.19 0.19 0.10 0.15
 y-1,y-2 0.16 0.19 (0.11) 0.13
 Y-1,y-1 0.16 0.17 0.07 0.10
 Z-1 0.20 0.19 0.18 0.11
 z-1 0.23 0.19 0.21 0.15
 X 0.30 0.31 0.27 0.27
 X,Y-1 0.17 0.19 0.11 0.13
 X,y-1 0.18 0.19 0.09 0.14
Low-income schools
 Y-1 0.17 0.21 (0.14) (0.14)
 y-1 0.20 0.23 (0.12) (0.18)
Low-achieving schools
 Y-1 0.16 0.18 (0.13) (0.11)
 y-1 0.16 0.17 (0.11) (0.11)

Using Covariates to Improve Precision

School sample and covariates
Findings by Grade and Subject

Eighth Grade Tenth Grade

NOTES: Means in parenthesis indicate that the reported values do not include the values from all districts. Y-1 

and Y-2 are mean school scores for the same grade lagged one and two years, respectively. y-1, and y-2 are 
individual student scores lagged one and two years, respectively.  Z-1 and z-1 are mean school scores and 
individual scores in the previous year for a different test (with a math test as the pretest for reading outcomes 
and a reading test as the pretest for math outcomes). X is a vector of demographic characteristics, which 
differs across districts. Low-income schools are defined as those whose average proportion of students 
eligible for free lunch exceeds the district average.  Low-achieving schools in the district are defined as those 
whose average combined sum of reading and math pretest scores were lower than the corresponding district 
average. Findings reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 
250 students per school, and a balanced (50/50) allocation of schools to treatment and control status. 
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Table 13

Mean Estimates of ρ and R2
C 

by Grade, Subject, and District

A B C D E

Third grade
   Reading 0.20 0.15 0.19 0.22 0.16
   Math 0.20 0.17 0.17 0.23 0.18

Fifth grade
   Reading 0.25 0.15 0.20 NA 0.12
   Math 0.20 0.19 0.17 NA 0.18

Eighth grade
   Reading 0.18 NA 0.23 NA NA
   Math 0.16 NA 0.27 NA NA

Tenth grade
   Reading 0.15 NA 0.29 NA NA
   Math 0.13 NA 0.25 NA NA

Third grade
   Reading 0.31 0.77 0.74 0.51 0.75
   Math 0.54 0.71 0.61 0.48 0.82

Fifth grade
   Reading 0.33 0.50 0.81 NA 0.70
   Math 0.47 0.54 0.66 NA 0.73

Eighth grade
   Reading 0.77 NA 0.91 NA NA
   Math 0.78 NA 0.83 NA NA

Tenth grade
   Reading 0.93 NA 0.95 NA NA
   Math 0.97 NA 0.91 NA NA

Estimates of R2
C for Y-1

Using Covariates to Improve Precision

Grade and subject District

Estimates of ρ

NOTES: Y-1 is the mean school score for the same grade lagged one year. ρ is the intra-class correlation for 
students within schools. R2

C is the average proportion of the school cluster-level variance reduced by the 
covariate.  The averages are computed as the mean of the corresponding district-level parameters. 

District A's 3rd, 5th, and 8th grade averages are based on tests administered in spring 1999 and spring 2000.  
The 10th grade averages are tests administered in spring 1997 and spring 1998. 

District B's 3rd grade averages are based on tests administered in spring 1998 through spring 2003. The 5th 
grade averages are based on tests administered in spring 1997. The 10th grade averages are based on tests 
administered in spring 2001 and spring 2002. 

District C's 3rd, 5th, and 8th grade averages are based on tests administered in spring 2002 and spring 2003. 

District D's 3rd grade averages are based on tests administered in spring 1994 through spring 1999. 
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10th 25th 50th 75th 90th
Percentile Percentile Percentile Percentile Percentile

Covariate = Y-1

J = 20 0.23 0.29 0.36 0.43 0.50
J = 40 0.16 0.21 0.26 0.31 0.35
J = 60 0.13 0.17 0.21 0.25 0.29

Covariate = y-1

J = 20 0.20 0.28 0.37 0.46 0.54
J = 40 0.14 0.20 0.26 0.32 0.38
J = 60 0.12 0.16 0.21 0.27 0.31

Covariate = Y-1

J = 20 0.25 0.30 0.36 0.42 0.48
J = 40 0.18 0.21 0.26 0.30 0.34
J = 60 0.14 0.17 0.21 0.24 0.28

Covariate = y-1

J = 20 0.33 0.37 0.42 0.47 0.52
J = 40 0.23 0.26 0.30 0.33 0.37
J = 60 0.19 0.21 0.24 0.27 0.30

Using Covariates to Improve Precision

Third Grade Reading

Third Grade Math

Table 14

Percentile Values of Minimum Detectable Effect Sizes
Implied by Estimates for Third Grade Reading and Math

Covariate and 
sample size

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual 
student score lagged one year.  Findings reflect statistical significance of 0.05, statistical power of 
0.80, a two-tail hypothesis test, 60 students per school, and a balanced (50/50) allocation of schoools 
to treatment and control status. Findings are based on two years of data for Districts A, C, and E and 
six years of data for Districts B and D.
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Appendix 

Additional Detailed Findings by Grade and Subject 

 This appendix contains seven series of five tables each. A series of tables presents 
detailed findings for a specific grade and subject in the same format as Tables 4 – 8 for 3rd grade 
reading. The tables are numbered as follows.  

3rd grade math   Tables A1 – A5 

5th grade reading  Tables A6 – A10 

5th grade math   Tables A11 – A15 

8th grade reading    Tables A16 – A20 

8th grade math    Tables A21 – A25 

10th grade reading  Tables A26 – A30 

10th grade math   Tables A31 – A35 
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Appendix Table A1

Grade 3 Math

Minimum Detectable Effect Size (MDES) 
by Number of Randomized Schools (J) and Single Covariate

A B C D E Mean

No covariate 0.61 0.57 0.57 0.65 0.49 0.58
   Y-1 0.42 0.34 0.38 0.48 0.25 0.37
   Y-2 0.46 0.39 0.42 0.53 0.29 0.42
   Y-3 0.46 0.42 0.43 0.56 NA (0.47)
    y-1 0.49 0.35 0.39 0.51 0.43 0.43
    y-2 0.51 NA 0.43 NA 0.41 (0.45)
    y-3 NA NA NA NA NA NA

No covariate 0.42 0.39 0.39 0.45 0.35 0.40
   Y-1 0.29 0.23 0.26 0.33 0.18 0.26
   Y-2 0.32 0.27 0.29 0.37 0.21 0.29
   Y-3 0.32 0.29 0.30 0.39 NA (0.32)
    y-1 0.34 0.24 0.26 0.35 0.31 0.30
    y-2 0.35 NA 0.29 NA 0.29 (0.31)
    y-3 NA NA NA NA NA NA

No covariate 0.34 0.32 0.32 0.36 0.29 0.32
   Y-1 0.24 0.19 0.21 0.27 0.14 0.21
   Y-2 0.26 0.22 0.23 0.30 0.17 0.23
   Y-3 0.26 0.23 0.24 0.31 NA (0.26)
    y-1 0.27 0.20 0.21 0.28 0.25 0.24
    y-2 0.29 NA 0.24 NA 0.24 (0.25)
    y-3 NA NA NA NA NA NA

MDES(J=40)

MDES(J=60)

Using Covariates to Improve Precision

Covariate Findings for District

MDES(J=20)

NOTES: In the last column, means in parenthesis indicate that the reported values do not include the values from 
all five districts. Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three years, 
respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three years, respectively. Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students per school, 
and a balanced (50/50) allocation of schools to treatment and control status. Entries are computed using the mean 
of the corresponding district-level parameters.  See Appendix Table A4 for these parameters.  

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school 
and 68 schools, on average.  District B's outcomes are based on tests administered in spring 1998 through spring 
2003, with 57 students per school and 89 schools, on average.  District C's outcomes are based on tests 
administered in spring 2002 and spring 2003, with 69 students per school and 169 schools, on average.  District 
D's outcomes are based on tests administered in spring 1994 through spring 1999, with 65 students per school and 
48 schools, on average. District E's outcomes are taken from Table 4 of Bloom, Bos, and Lee (1999).
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Appendix Table A2

Grade 3 Math

Minimum Detectable Effect Size for 40 Randomized Schools with
 Alternative Samples of Schools and Covariates

(Excluding District E)

A B C D Mean
All schools
No covariate 0.42 0.39 0.39 0.45 0.41
 Y-1 0.29 0.23 0.26 0.33 0.28
 Y-1,Y-2 0.28 0.22 0.25 0.32 0.27
 y-1 0.34 0.24 0.26 0.35 0.30
 y-1,y-2 0.32 NA 0.25 NA (0.29)
 Y-1,y-1 0.29 0.21 0.25 0.31 0.26
 Z-1 0.29 0.23 0.26 0.33 0.28
 z-1 0.34 0.24 0.26 0.35 0.30
 X 0.31 0.31 0.31 NA (0.31)
 X,Y-1 0.25 0.22 0.25 NA (0.24)
 X,y-1 0.28 0.23 0.25 NA (0.25)
Low-income schools
 Y-1 0.28 0.25 0.27 NA (0.27)
 y-1 0.30 0.24 0.28 NA (0.27)
Low-achieving schools
 Y-1 0.27 0.26 0.25 0.34 0.28
 y-1 0.31 0.26 0.27 0.34 0.30

(continued)

School sample and covariates Findings for District

Using Covariates to Improve Precision

NOTES: In the last column, means in parenthesis indicate that the reported values do not include the values from 
all four districts. Y-1 and Y-2 are mean school scores for the same grade lagged one and two years, respectively. y-1 

and y-2 are individual student scores lagged one and two years, respectively.  Z-1 and z-1 are mean school scores 
and individual scores in the previous year for a different test (with a math test as the pretest for reading outcomes 
and a reading test as the pretest for math outcomes). X is a vector of demographic characteristics, which differs 
across districts. Low-income schools are defined as those whose average proportion of students eligible for free 
lunch exceeds the district average.  Low-achieving schools in the district are defined as those whose average 
combined sum of reading and math pretest scores were lower than the corresponding district average. Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students per school, 
and a balanced (50/50) allocation of schools to treatment and control status. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school 
and 68 schools, on average.  The low-income sample outcomes are based on data consisting of 76 students and 49 
schools, on average.  The low-achieving sample outcomes are based on data consisting of 71 students and 35 
schools, on average.
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Appendix Table A2 (continued)

District B's outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per 
school and 89 schools, on average. Low-income schools in District B are defined as those identified by the 
district as being economically disadvantaged.  The low-income sample outcomes are based on data consisting of 
58 students and 48 schools, on average.  The low-achieving sample outcomes are based on data consisting of 57 
students and 43 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 69 students per 
school and 169 schools, on average.  The low-income sample outcomes are based on data consisting of 62 
students per school and 129 schools, on average. The low-achieving sample outcomes are based on data 
consisting of 59 students per school and 76 schools, on average.

District D's outcomes are based on tests administered in spring 1994 through spring 1999, with 65 students per 
school and 48 schools, on average. The low-achieving sample outcomes are based on data consisting of 61 
students per school and 23 schools, on average. Data on free lunch status was not available to identify low-
income schools.
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Appendix Table A3

Grade 3 Math

Alternative Samples of Schools and Selected Covariates

(min, max) (min, max) (min, max) (min, max) (min, max)
All schools
 Y-1 (0.29, 0.30) (0.20, 0.27) (0.25, 0.26) (0.25, 0.36) (0.17, 0.18)
 y-1 (0.33, 0.34) (0.20, 0.29) (0.25, 0.28) (0.31, 0.39) (0.27, 0.34)
Low-income schools
 Y-1 (0.27, 0.29) (0.21, 0.31) (0.27, 0.28) NA NA NA NA
 y-1 (0.28, 0.31) (0.21, 0.30) (0.27, 0.29) NA NA NA NA
Low-achieving schools
 Y-1 (0.25, 0.29) (0.22, 0.31) (0.23, 0.27) (0.25, 0.43) NA NA
 y-1 (0.30, 0.32) (0.22, 0.32) (0.25, 0.28) (0.23, 0.40) NA NA

Using Covariates to Improve Precision

D ESchool sample and covariate A B C
Findings for District

Minimum Detectable Effect Size Ranges for 40 Randomized Schools with

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1is the individual student score 
lagged one year. Low-income schools are defined as those whose average proportion of students eligible for free 
lunch exceeds the district average.  Low-achieving schools in the district are defined as those whose average 
combined sum of reading and math pretest scores were lower than the corresponding district average.  Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students per school, and
a balanced (50/50) allocation of schools to treatment and control status.  

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school 
and 68 schools, on average.  The low-income sample outcomes are based on data consisting of 76 students and 49 
schools, on average.  The low-achieving sample outcomes are based on data consisting of 71 students and 35 schools
on average.

District B's outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per 
school and 89 schools, on average. Low-income schools in District B are defined as those identified by the district as
being economically disadvantaged. The low-income sample outcomes are based on data consisting of 58 students and
48 schools, on average.  The low-achieving sample outcomes are based on data consisting of 57 students and 43 
schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 69 students per school 
and 169 schools, on average.  The low-income sample outcomes are based on data consisting of 62 students per 
school and 129 schools, on average. The low-achieving sample outcomes are based on data consisting of 59 students 
per school and 76 schools, on average.

District D's outcomes are based on tests administered in spring 1994 through spring 1999, with 65 students per 
school and 48 schools, on average. The low-achieving sample outcomes are based on data consisting of 61 students 
per school and 23 schools, on average. Data on free lunch status was not available to identify low-income schools.

District E's outcomes are taken from Table 4 of Bloom, Bos, and Lee (1999).



 

Appendix Table A4

 Grade 3 Math

Parameter Values for Selected Covariates

R2
C R2

I R2
C R2

I R2
C R2

I R2
C R2

I R2
C R2

I

Y-1 0.54 0.00 0.71 0.00 0.61 0.00 0.48 0.00 0.82 0.00
Y-2 0.45 0.00 0.57 0.00 0.49 0.00 0.35 0.00 0.70 0.00
Y-3 0.45 0.00 0.50 0.00 0.46 0.00 0.26 0.00 NA NA
Y-1, Y-2 0.59 0.00 0.73 0.00 0.64 0.00 0.51 0.00 0.85 0.00
Y-2, Y-3 0.52 0.00 0.61 0.00 0.54 0.00 0.40 0.00 NA NA

y-1 0.35 0.25 0.63 0.41 0.56 0.40 0.39 0.30 0.24 0.31
y-2 0.29 0.17 NA NA 0.45 0.26 NA NA 0.32 0.23
y-3 NA NA NA NA NA NA NA NA NA NA
y-1, y-2 0.42 0.31 NA NA 0.59 0.43 NA NA 0.38 0.37
y-2, y-3 NA NA NA NA NA NA NA NA NA NA

Y-1, y-1 0.53 0.25 0.74 0.41 0.62 0.40 0.53 0.30 NA NA
Z-1 0.54 0.00 0.71 0.00 0.61 0.00 0.48 0.00 NA NA
z-1 0.35 0.25 0.63 0.41 0.56 0.40 0.39 0.30 NA NA
X 0.47 0.07 0.39 0.06 0.41 0.19 NA NA NA NA
X, Y-1 0.68 0.07 0.75 0.06 0.61 0.19 NA NA NA NA
X, y-1 0.57 0.28 0.69 0.42 0.59 0.45 NA NA NA NA

(continued)

0.17 0.23 0.18

Covariates
Parameters for District

A B C D E

Other covariates

Using Covariates to Improve Precision

Proportion of variance reduced (R2
C and R2

I)

School-level pretests only

Student-level pretests only

Intra-class correlation with no covariates (ρ)
0.20 0.17
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Appendix Table A4 (continued)

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three years, respectively. y-1, y-2, and y-3 are individual student 
scores lagged one, two, and three years, respectively. X is a vector of demographic characteristics, which differs across districts. Z-1 and z-1 are mean school 
scores and individual scores in the previous year for a different test (with a math test as the pretest for reading outcomes and a reading test as the pretest for 
math outcomes). R2

C and R2
I are the average proportion of the school-level variance and the student-level variance reduced by the covariates, respectively.  

The averages are computed as the mean of the corresponding district-level parameters. Nonzero estimates for R2
I with school-level covariates only are set 

equal to zero. See text for more details.

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school and 68 schools, on average. District B's 
outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per school and 89 schools, on average. District C's outcomes 
are based on tests administered in spring 2002 and spring 2003, with 69 students per school and 169 schools, on average.  District D's outcomes are based on 
tests administered in spring 1994 through spring 1999, with 65 students per school and 48 schools, on average. District E's outcomes are computed from 
information available in unpublished tables prepared by Bloom, Bos, and Lee (1999).
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Appendix Table A5

Grade 3 Math

Parameter Ranges for Alternative School Samples and Selected Covariates

(min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max)
All schools

ρ (0.19, 0.20) (0.15, 0.20) (0.16, 0.18) (0.18, 0.26) (0.16, 0.21)

R2
C (0.51, 0.57) (0.32, 0.38) (0.59, 0.82) (0.51, 0.74) (0.60, 0.61) (0.53, 0.58) (0.30, 0.72) (0.16, 0.57) (0.81, 0.83) (0.17, 0.30)

R2
I (0.00, 0.00) (0.24, 0.26) (0.00, 0.00) (0.38, 0.46) (0.00, 0.00) (0.40, 0.40) (0.00, 0.00) (0.27, 0.34) (0.00, 0.00) (0.30, 0.32)

ρ (0.09, 0.12) (0.06, 0.11) (0.11, 0.13) NA NA NA NA

R2
C (0.20, 0.23) (0.09, 0.12) (0.08, 0.46) (-0.13, 0.43) (0.32, 0.39) (0.25, 0.29) NA NA NA NA NA NA NA NA

R2
I (0.00, 0.00) (0.22, 0.25) (0.00, 0.00) (0.33, 0.42) (0.00, 0.00) (0.37, 0.37) NA NA NA NA NA NA NA NA

ρ (0.08, 0.12) (0.07, 0.12) (0.07, 0.08) (0.07, 0.20) NA NA

R2
C (0.24, 0.30) (-0.19, 0.08) (0.09, 0.44) (-0.17, 0.40) (0.00, 0.43) (-0.20, 0.18) (-0.04, 0.14) (-0.32, 0.45) NA NA NA NA

R2
I (0.00, 0.00) (0.22, 0.28) (0.00, 0.00) (0.32, 0.42) (0.00, 0.00) (0.38, 0.39) (0.00, 0.00) (0.27, 0.36) NA NA NA NA

(continued)

Using Covariates to Improve Precision

(same for all 
models)

(same for all 
models)

Low-achieving schools

y-1

(same for all 
models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

Low-income schools
(same for all 

models)
(same for all 

models)
(same for all 

models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

(same for all 
models)

y-1 Y-1 y-1 Y-1y-1 Y-1 y-1 Y-1

School sample 
and 

parameters

Parameters for District

A B C D E

Covariate
Y-1

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual student score lagged one year. ρ is the intra-class correlation for 
students within schools. R2

C and R2
I are the proportions of the school-level variance and the student-level variance reduced by the covariates, respectively. Nonzero 

estimates for R2
I with school-level covariates only are set equal to zero. See text for more details. Low-income schools are defined as those whose average 

proportion of students eligible for free lunch exceeds the district average.  Low-achieving schools in the district are defined as those whose average combined
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Appendix Table A5 (continued)

sum of reading and math pretest scores were lower than the corresponding district average.

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 77 students per school and 68 schools, on average.  The low-income 
sample outcomes are based on data consisting of 76 students and 49 schools, on average.  The low-achieving sample outcomes are based on data consisting of 71 
students and 35 schools, on average.

District B's  outcomes are based on tests administered in spring 1998 through spring 2003, with 57 students per school and 89 schools, on average. Low-income 
schools in District B are defined as those identified by the district as being economically disadvantaged. The low-income sample outcomes are based on data 
consisting of 58 students and 48 schools, on average.  The low-achieving sample outcomes are based on data consisting of 57 students and 43 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 69 students per school and 169 schools, on average.  The low-income 
sample outcomes are based on data consisting of 62 students per school and 129 schools, on average. The low-achieving sample outcomes are based on data 
consisting of 59 students per school and 76 schools, on average.

District D's outcomes are based on tests administered in spring 1994 through spring 1999, with 65 students per school and 48 schools, on average. The low-achieving 
sample outcomes are based on data consisting of 61 students per school and 23 schools, on average. Data on free lunch status was not available to identify low-
income schools.

District E's outcomes are computed from information available in unpublished tables prepared by Bloom, Bos, and Lee (1999).
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Appendix Table A6

Grade 5 Reading

Minimum Detectable Effect Size (MDES) 
by Number of Randomized Schools (J) and Single Covariate

A B C E Mean

No covariate 0.68 0.53 0.61 0.40 0.56
   Y-1 0.56 0.39 0.30 0.25 0.38
   Y-2 0.56 0.43 0.34 0.28 0.40
   Y-3 NA NA 0.36 NA (0.36)
    y-1 0.60 0.55 a 0.28 0.16 0.40
    y-2 0.59 0.32 0.34 0.21 0.36
    y-3 0.61 NA NA NA (0.61)

No covariate 0.47 0.37 0.42 0.29 0.38
   Y-1 0.38 0.27 0.21 0.18 0.26
   Y-2 0.38 0.30 0.24 0.20 0.28
   Y-3 NA NA 0.25 NA (0.25)
    y-1 0.41 0.38 a 0.19 0.11 0.27
    y-2 0.40 0.22 0.23 0.15 0.25
    y-3 0.42 NA NA NA (0.42)

No covariate 0.38 0.30 0.34 0.23 0.31
   Y-1 0.31 0.22 0.17 0.14 0.21
   Y-2 0.31 0.24 0.19 0.16 0.22
   Y-3 NA NA 0.20 NA (0.20)
    y-1 0.33 0.31 a 0.16 0.09 0.22
    y-2 0.33 0.18 0.19 0.12 0.20
    y-3 0.34 NA NA NA (0.34)

(continued)

MDES(J=40)

MDES(J=60)

Using Covariates to Improve Precision

Covariate
Findings for District

MDES(J=20)

NOTES:   In the last column, means in parenthesis indicate that the reported values do not include the values 
from all four districts. Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three 
years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three years, respectively. 
Findings reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students 
per school, and a balanced (50/50) allocation of schools to treatment and control status. Entries are computed 
using the mean of the corresponding district-level parameters.  See Appendix Table A9 for these parameters. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students per 
school and 68 schools, on average. District B's outcomes are based on tests administered in spring 1997, with 
48 students per school and 83 schools. District C's outcomes are based on tests administered in spring 2002 and 
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Appendix Table A6 (continued)

spring 2003, with 85 students per school and 171 schools, on average. District E's outcomes are for the sixth 
grade and are taken from Table 4 of Bloom, Bos, and Lee (1999).

aBeginning in 1996 a second test was also administered to 4th graders in District B. With the addition of this 
new test, the 4th grade scores for the former test fell. Thus, individual scores in the previous year for the 1997 
cohort of 5th graders are not good predictors of their 5th grade test results. This is reflected in the table by the 
fact that the MDES for y-1 in District B is about as large as or larger than its MDES for no covariates. 
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Appendix Table A7

Grade 5 Reading

Minimum Detectable Effect Size for 40 Randomized Schools with
 Alternative Samples of Schools and Covariates

(Excluding District E)

A B C Mean
All schools
No covariate 0.47 0.37 0.42 0.42
 Y-1 0.38 0.27 0.21 0.29
 Y-1,Y-2 0.37 0.27 0.20 0.28
 y-1 0.41 0.38 a 0.19 0.33
 y-1,y-2 0.39 0.25 0.20 0.28
 Y-1,y-1 0.38 0.33 0.18 0.30
 Z-1 0.40 0.29 0.27 0.32
 z-1 0.41 0.34 0.25 0.33
 X 0.42 0.28 0.26 0.32
 X,Y-1 0.37 0.23 0.19 0.26
 X,y-1 0.40 0.33 0.19 0.31
Low-income schools
 Y-1 0.41 0.25 0.22 0.29
 y-1 0.43 0.27 a 0.24 0.31
Low-achieving schools
 Y-1 0.41 0.24 0.23 0.30
 y-1 0.44 0.35 a 0.25 0.35

(continued)

School sample and covariates
Findings for District

Using Covariates to Improve Precision 

NOTES: Y-1 and Y-2 are mean school scores for the same grade lagged one and two years, respectively. 
y-1 and y-2 are individual student scores lagged one and two years, respectively.  Z-1 and z-1 are mean 
school scores and individual scores in the previous year for a different test (with a math test as the 
pretest for reading outcomes and a reading test as the pretest for math outcomes). X is a vector of 
demographic characteristics, which differs across districts.  Low-income schools are defined as those 
whose average proportion of students eligible for free lunch exceeds the district average.  Low-
achieving schools in the district are defined as those whose average combined sum of reading and math 
pretest scores were lower than the corresponding district average.  Findings reflect: statistical 
significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students per school, and a 
balanced (50/50) allocation of schools to treatment and control status. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students 
per school and 68 schools, on average.  The low-income sample outcomes are based on data consisting 
of 63 students and 45 schools, on average.  The low-achieving sample outcomes are based on data 
consisting of 63 students and 34 schools, on average.
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Appendix Table A7 (continued)

District B's outcomes are based on tests administered in spring 1997, with 48 students per school and 
83 schools.  Low-income schools in District B are defined as those identified by the district as being 
economically disadvantaged.  The low-income sample outcomes are based on data consisting of 47 
students and 43 schools.  The low-achieving sample outcomes are based on data consisting of 47 
students and 41 schools. 

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 85 students 
per school and 171 schools, on average.  The low-income sample outcomes are based on data 
consisting of 78 students per school and 120 schools, on average. The low-achieving sample outcomes 
are based on data consisting of 75 students per school and 82 schools, on average.

aBeginning in 1996 a second test was also administered to 4th graders in District B. With the addition 
of this new test, the 4th grade scores for the former test fell. Thus, individual scores in the previous 
year for the 1997 cohort of 5th graders are not good predictors of their 5th grade test results. This is 
reflected in the table by the fact that the MDES for y-1 in District B is about as large as or larger than its 
MDES for no covariates. 
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Appendix Table A8

Grade 5 Reading

Minimum Detectable Effect Size Ranges for 40 Randomized Schools with
Alternative Samples of Schools and Selected Covariates

(min, max) (min, max) (min, max) (min, max)
All schools
 Y-1 (0.36, 0.41) (0.20, 0.21) (0.17, 0.18)
 y-1 (0.38, 0.45) (0.18, 0.20) (0.09, 0.13)
Low-income schools
 Y-1 (0.38, 0.45) (0.22, 0.23) NA NA
 y-1 (0.38, 0.47) (0.22, 0.25) NA NA
Low-achieving schools
 Y-1 (0.35, 0.46) (0.23, 0.24) NA NA
 y-1 (0.37, 0.50) (0.24, 0.26) NA NA

Using Covariates to Improve Precision 

(range not 
available)a

(range not 
available)a

(range not 
available)a

Findings for District
School sample and covariate A B C E

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual 
student score lagged one year. Low-income schools are defined as those whose average proportion of 
students eligible for free lunch exceeds the district average.  Low-achieving schools in the district are 
defined as those whose average combined sum of reading and math pretest scores were lower than the 
corresponding district average.  Findings reflect: statistical significance of 0.05, statistical power of 
0.80, a two-tail hypothesis test, 60 students per school, and a balanced (50/50) allocation of schools 
to treatment and control status.  

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 
students per school and 68 schools, on average.  The low-income sample outcomes are based on data 
consisting of 63 students and 45 schools, on average.  The low-achieving sample outcomes are based 
on data consisting of 63 students and 34 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 85 
students per school and 171 schools, on average.  The low-income sample outcomes are based on 
data consisting of 78 students per school and 120 schools, on average. The low-achieving sample 
outcomes are based on data consisting of 75 students per school and 82 schools, on average.

District E's outcomes are for the sixth grade and are taken from Table 4 of Bloom, Bos, and Lee 
(1999).

aThere is only one year of follow-up data for District B.  Values for this year can be obtained from 
Appendix Table A7.
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Appendix Table A9

Grade 5 Reading

Parameter Values for Selected Covariates

R2
C R2

I R2
C R2

I R2
C R2

I R2
C R2

I

Y-1 0.33 0.00 0.50 0.00 0.81 0.00 0.70 0.00
Y-2 0.35 0.00 0.37 0.00 0.73 0.00 0.59 0.00
Y-3 NA NA NA NA 0.70 0.00 NA NA
Y-1, Y-2 0.40 0.00 0.51 0.00 0.83 0.00 0.70 0.00
Y-2, Y-3 NA NA NA NA 0.77 0.00 NA NA

y-1 0.21 0.29 -0.08 a 0.14 a 0.80 0.49 0.88 0.59
y-2 0.25 0.24 0.67 0.36 0.71 0.37 0.74 0.42
y-3 0.19 0.18 NA NA NA NA NA NA
y-1, y-2 0.30 0.36 0.56 0.38 0.80 0.52 0.87 0.67
y-2, y-3 0.26 0.29 NA NA NA NA NA NA

Y-1, y-1 0.35 0.29 0.20 0.14 0.83 0.49 NA NA
Z-1 0.30 0.00 0.40 0.00 0.62 0.00 NA NA
z-1 0.23 0.25 0.15 0.12 0.67 0.33 NA NA
X 0.21 0.09 0.43 0.08 0.65 0.27 NA NA
X, Y-1 0.40 0.09 0.64 0.08 0.84 0.27 NA NA
X, y-1 0.26 0.32 0.18 0.19 0.81 0.53 NA NA

(continued)

0.12

Covariates Parameters for District
A B C E

Other covariates

Student-level pretests only

Using Covariates to Improve Precision

Proportion of variance reduced (R2
C and R2

I)

School-level pretests only

Intra-class correlation with no covariates (ρ)
0.25 0.15 0.20

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three years, respectively. 
y-1, y-2, and y-3 are individual student scores lagged one, two, and three years, respectively. X is a vector of 
demographic characteristics, which differs across districts. Z-1 and z-1 are mean school scores and individual scores 
in the previous year for a different test (with a math test as the pretest for reading outcomes and a reading test as the 
pretest for math outcomes). R2

C and R2
I are the average proportion of the school-level variance and the student-level

variance reduced by the covariates, respectively.  The averages are computed as the mean of the corresponding 
district-level parameters. Nonzero estimates for R2

I  with school level covariates only are set equal to zero.  See text 
for more details.

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students per school 
and 68 schools, on average. District B's outcomes are based on tests administered in spring 1997, with 48 students 
per school and 83 schools. District C's outcomes are based on tests administered in spring 2002 and spring 2003, 
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Appendix Table A9 (continued)

with 85 students per school and 171 schools, on average. District E's outcomes are for the sixth grade and were 
computed from information available in unpublished tables prepared by Bloom, Bos, and Lee (1999).

aBeginning in 1996 a second test was also administered to 4th graders in District B. With the addition of this new 
test, the 4th grade scores for the former test fell. Thus, individual scores in the previous year for the 1997 cohort of 
5th graders are not good predictors of their 5th grade test results. This is reflected in the table by the fact that the 
average proportion of the school-level variance explained and the student-level variance explained by y-1 in District 
B is very small. 



 

Appendix Table A10

Grade 5 Reading

Parameter Ranges for Alternative School Samples and Selected Covariates

(min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max)
All schools
ρ (0.21, 0.29) (0.19, 0.21) (0.08, 0.15)
R2

C (0.33, 0.34) (0.19, 0.23) (0.80, 0.81) (0.79, 0.82) (0.61, 0.80) (0.85, 0.91)

R2
I (0.00, 0.00) (0.28, 0.30) (0.00, 0.00) (0.49, 0.49) (0.00, 0.00) (0.56, 0.61)

ρ (0.19, 0.29) (0.08, 0.10) NA NA
R2

C (0.16, 0.21) (0.10, 0.12) (0.50, 0.51) (0.21, 0.47) NA NA NA NA

R2
I (0.00, 0.00) (0.23, 0.25) (0.00, 0.00) (0.43, 0.45) NA NA NA NA

ρ (0.17, 0.32) (0.07, 0.09) NA NA
R2

C (0.19, 0.24) (0.08, 0.09) (0.35, 0.39) (0.03, 0.28) NA NA NA NA

R2
I (0.00, 0.00) (0.24, 0.27) (0.00, 0.00) (0.43, 0.44) NA NA NA NA

(continued)

School sample and 
parameters

Parameters for District

A B C E

Covariates
y-1

(same for all models)

(range not available)a

(same for all models) (same for all models)

Y-1 y-1y-1 y-1Y-1

Using Covariates to Improve Precision

(same for all models)

Low-achieving schools

Low-income schools
(same for all models)

(range not available)a

Y-1 Y-1

(same for all models)

(same for all models)

(range not available)a

(same for all models) (same for all models)

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual student score lagged one year. ρ is the intra-class 
correlation for students within schools. R2

C and R2
I are the proportions of the school-level variance and the student-level variance reduced by the covariates, 

respectively. Nonzero estimates for R2
I  with school-level covariates only are set equal to zero.  See text for more details.  Low-income schools are defined as 

those whose average proportion of students eligible for free lunch exceeds the district average.  Low-achieving schools in the district are defined as those 
whose average combined sum of reading and math pretest scores were lower than the corresponding district average.

79 



 

Appendix Table A10 (continued)

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students per school and 68 schools, on average.  The low-
income sample outcomes are based on data consisting of 63 students and 45 schools, on average.  The low-achieving sample outcomes are based on data 
consisting of 63 students and 34 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 85 students per school and 171 schools, on average.  The low-
income sample outcomes are based on data consisting of 78 students per school and 120 schools, on average. The low-achieving sample outcomes are based 
on data consisting of 75 students per school and 82 schools, on average.

District E's outcomes are for the sixth grade and were computed from information available in unpublished tables prepared by Bloom, Bos, and Lee (1999).

aThere is only one year of follow-up data for District B.  Values for this year can be obtained from Appendix Table A9.
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Appendix Table A11

Grade 5 Math

Minimum Detectable Effect Size (MDES) 
by Number of Randomized Schools (J) and Single Covariate

A B C E Mean

No covariate 0.61 0.60 0.57 0.49 0.57
   Y-1 0.45 0.42 0.35 0.28 0.38
   Y-2 0.43 0.48 0.38 0.34 0.41
   Y-3 0.48 NA 0.40 NA (0.44)
    y-1 0.43 0.56 a 0.32 0.25 0.39
    y-2 0.44 0.38 0.38 0.34 0.38
    y-3 0.50 NA NA NA (0.50)

No covariate 0.42 0.41 0.39 0.35 0.39
   Y-1 0.31 0.29 0.24 0.20 0.26
   Y-2 0.30 0.33 0.26 0.24 0.28
   Y-3 0.33 NA 0.27 NA (0.30)
    y-1 0.30 0.38 a 0.22 0.18 0.27
    y-2 0.30 0.26 0.26 0.24 0.27
    y-3 0.34 NA NA NA (0.34)

No covariate 0.34 0.33 0.32 0.29 0.32
   Y-1 0.25 0.23 0.20 0.16 0.21
   Y-2 0.24 0.27 0.21 0.20 0.23
   Y-3 0.27 NA 0.22 NA (0.24)
    y-1 0.24 0.31 a 0.18 0.15 0.22
    y-2 0.24 0.21 0.21 0.20 0.22
    y-3 0.28 NA NA NA (0.28)

(continued)

MDES(J=40)

MDES(J=60)

Using Covariates to Improve Precision

Covariate
Findings for District

MDES(J=20)

NOTES: In the last column, means in parenthesis indicate that the reported values do not include the values 
from all four districts. Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three 
years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three years, respectively. 
Findings reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 60 students 
per school, and a balanced (50/50) allocation of schools to treatment and control status. Entries are computed 
using the mean of the corresponding district-level parameters.  See Appendix Table A14 for these parameters. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students per 
school and 68 schools, on average. District B's outcomes are based on tests administered in spring 1997, with 
48 students per school and 83 schools. District C's outcomes are based on tests administered in spring 2002 and 
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Appendix Table A11 (continued)

spring 2003, with 85 students per school and 171 schools, on average. District E's outcomes are for the sixth 
grade and are taken from Table 4 of Bloom, Bos, and Lee (1999).

aBeginning in 1996 a second test was also administered to 4th graders in District B. With the addition of this 
new test, the 4th grade scores for the former test fell. Thus, individual scores in the previous year for the 1997 
cohort of 5th graders are not good predictors of their 5th grade test results. This is reflected in the table by the 
fact that the MDES for y-1 in District B is about as large or larger than its MDES for no covariates. 
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Appendix Table A12

Grade 5 Math

Minimum Detectable Effect Size for 40 Randomized Schools with
Alternative Samples of Schools and Covariates

(Excluding District E)

A B C Mean
All schools
No covariate 0.42 0.41 0.39 0.41
 Y-1 0.31 0.29 0.24 0.28
 Y-1,Y-2 0.28 0.29 0.23 0.26
 y-1 0.30 0.38 a 0.22 0.30
 y-1,y-2 0.27 0.27 0.22 0.26
 Y-1,y-1 0.28 0.33 0.21 0.27
 Z-1 0.31 0.29 0.24 0.28
 z-1 0.30 0.38 0.22 0.30
 X 0.32 0.34 0.27 0.31
 X,Y-1 0.28 0.24 0.22 0.25
 X,y-1 0.28 0.35 0.22 0.28
Low-income schools
 Y-1 0.32 0.29 0.25 0.29
 y-1 0.33 0.38 a 0.24 0.32
Low-achieving schools
 Y-1 0.32 0.30 0.26 0.30
 y-1 0.35 0.42 a 0.26 0.34

(continued)

School sample and covariates
Findings for District

Using Covariates to Improve Precision 

NOTES: Y-1 and Y-2 are mean school scores for the same grade lagged one and two years, respectively. 
y-1 and y-2 are individual student scores lagged one and two years, respectively.  Z-1 and z-1 are mean 
school scores and individual scores in the previous year for a different test (with a math test as the 
pretest for reading outcomes and a reading test as the pretest for math outcomes). X is a vector of 
demographic characteristics, which differs across districts. Low-income schools are defined as those 
whose average proportion of students eligible for free lunch exceeds the district average.  Low-
achieving schools in the district are defined as those whose average combined sum of reading and math 
pretest scores were lower than the corresponding district average.  Findings reflect: statistical 
significance of 0.05, statistical power of 0.80, a two-tail hypothesis test,60 students per school, and a 
balanced (50/50) allocation of schools to treatment and control status. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students 
per school and 68 schools, on average.  The low-income sample outcomes are based on data consisting 
of 63 students and 45 schools, on average.  The low-achieving sample outcomes are based on data 
consisting of 63 students and 34 schools, on average.
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Appendix Table A12 (continued)

District B's outcomes are based on tests administered in spring 1997, with 48 students per school and 
83 schools.  Low-income schools in District B are defined as those identified by the district as being 
economically disadvantaged.  The low-income sample outcomes are based on data consisting of 47 
students and 43 schools.  The low-achieving sample outcomes are based on data consisting of 47 
students and 41 schools. 

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 85 students 
per school and 171 schools, on average.  The low-income sample outcomes are based on data 
consisting of 78 students per school and 120 schools, on average. The low-achieving sample outcomes 
are based on data consisting of 75 students per school and 82 schools, on average.

aBeginning in 1996 a second test was also administered to 4th graders in District B. With the addition 
of this new test, the 4th grade scores for the former test fell. Thus, individual scores in the previous 
year for the 1997 cohort of 5th graders are not goods predictors of their 5th grade test results. This is 
reflected in the table by the fact that the MDES for y-1 in District B is about as large or larger than its 
MDES for no covariates.  
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Appendix Table A13

Grade 5 Math

Minimum Detectable Effect Size Ranges for 40 Randomized Schools with
Alternative Samples of Schools and Selected Covariates

(min, max) (min, max) (min, max) (min, max)
All schools
 Y-1 (0.30, 0.32) (0.23, 0.26) (0.18, 0.21)
 y-1 (0.27, 0.32) (0.22, 0.22) (0.16, 0.20)
Low-income schools
 Y-1 (0.32, 0.33) (0.25, 0.25) NA NA
 y-1 (0.30, 0.36) (0.24, 0.25) NA NA
Low-achieving schools
 Y-1 (0.32, 0.33) (0.26, 0.27) NA NA
 y-1 (0.30, 0.38) (0.25, 0.26) NA NA

(range not 
available)a

(range not 
available)a

(range not 
available)a

School sample and covariate

Using Covariates to Improve Precision 

Findings for District
A B C E

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual 
student score lagged one year. Low-income schools are defined as those whose average proportion of 
students eligible for free lunch exceeds the district average.  Low-achieving schools in the district are 
defined as those whose average combined sum of reading and math pretest scores were lower than the 
corresponding district average. Findings reflect: statistical significance of 0.05, statistical power of 
0.80, a two-tail hypothesis test, 60 students per school, and a balanced (50/50) allocation of schools to 
treatment and control status.  

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 
students per school and 68 schools, on average.  The low-income sample outcomes are based on data 
consisting of 63 students and 45 schools, on average.  The low-achieving sample outcomes are based 
on data consisting of 63 students and 34 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 85 
students per school and 171 schools, on average.  The low-income sample outcomes are based on data 
consisting of 78 students per school and 120 schools, on average. The low-achieving sample 
outcomes are based on data consisting of 75 students per school and 82 schools, on average.

District E's outcomes are for the sixth grade and are taken from Table 4 of Bloom, Bos, and Lee 
(1999).

aThere is only one year of follow-up data for District B.  Values for this year can be obtained from 
Appendix Table A12.
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Appendix Table A14

Grade 5 Math

Parameter Values for Selected Covariates

R2
C R2

I R2
C R2

I R2
C R2

I R2
C R2

I

Y-1 0.47 0.00 0.54 0.00 0.66 0.00 0.73 0.00
Y-2 0.53 0.00 0.39 0.00 0.60 0.00 0.59 0.00
Y-3 0.41 0.00 NA NA 0.55 0.00 NA NA
Y-1, Y-2 0.60 0.00 0.55 0.00 0.72 0.00 0.76 0.00
Y-2, Y-3 0.56 0.00 NA NA 0.64 0.00 NA NA

y-1 0.50 0.45 0.13 a 0.16 a 0.70 0.45 0.75 0.45
y-2 0.49 0.33 0.62 0.37 0.57 0.32 0.55 0.35
y-3 0.33 0.20 NA NA NA NA NA NA
y-1, y-2 0.57 0.50 0.57 0.40 0.70 0.48 0.74 0.50
y-2, y-3 0.52 0.37 NA NA NA NA NA NA

Y-1, y-1 0.57 0.45 0.37 0.16 0.73 0.45 NA NA
Z-1 0.47 0.00 0.54 0.00 0.66 0.00 NA NA
z-1 0.50 0.45 0.13 0.16 0.70 0.45 NA NA
X 0.43 0.09 0.32 0.08 0.53 0.24 NA NA
X, Y-1 0.60 0.09 0.69 0.08 0.70 0.24 NA NA
X, y-1 0.56 0.47 0.30 0.21 0.70 0.50 NA NA

(continued)

0.17 0.18

Covariates Parameters for District
A C EB

Other covariates

Using Covariates to Improve Precision 

Proportion of variance reduced (R2
C and R2

I)

School-level pretests only

Student-level pretests only

Intra-class correlation with no covariates (ρ)
0.20 0.19

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three years, respectively. 
y-1, y-2, and y-3 are individual student scores lagged one, two, and three years, respectively. X is a vector of 
demographic characteristics, which differs across districts. Z-1 and z-1 are mean school scores and individual scores 
in the previous year for a different test (with a math test as the pretest for reading outcomes and a reading test as 
the pretest for math outcomes). R2

C and R2
I are the average proportion of the school-level variance and the student-

level variance reduced by the covariates, respectively.  The averages are computed as the mean of the 
corresponding district-level parameters. Nonzero estimates for R2

I  with school level covariates only are set equal 
to zero.  See text for more details. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students per school 
and 68 schools, on average. District B's outcomes are based on tests administered in spring 1997, with 48 students 
per school and 83 schools. District C's outcomes are based on tests administered in spring 2002 and spring 2003, 
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Appendix Table A14 (continued)

with 85 students per school and 171 schools, on average. District E's outcomes are for the sixth grade and were 
computed from information available in unpublished tables prepared by Bloom, Bos, and Lee (1999).

aBeginning in 1996 a second test was also administered to 4th graders in District B. With the addition of this new 
test, the 4th grade scores for the former test fell. Thus, individual scores in the previous year for the 1997 cohort of 
5th graders are not good predictors of their 5th grade test results. This is reflected in the table by the fact that the 
average proportion of the school-level variance explained and the student-level variance explained by y-1 in 
District B is very small.  



 

Appendix Table A15

Grade 5 Math

Parameter Ranges for Alternative School Samples and Selected Covariates

(min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max) (min, max)
All schools
ρ (0.20, 0.20) (0.15, 0.19) (0.17, 0.20)
R2

C (0.44, 0.51) (0.40, 0.60) (0.65, 0.68) (0.66, 0.74) (0.67, 0.80) (0.67, 0.83)

R2
I (0.00, 0.00) (0.43, 0.46) (0.00, 0.00) (0.45, 0.45) (0.00, 0.00) (0.42, 0.47)

ρ (0.14, 0.14) (0.10, 0.10) NA NA
R2

C (0.18, 0.19) (-0.05, 0.26) (0.38, 0.41) (0.36, 0.38) NA NA NA NA
R2

I (0.00, 0.00) (0.40, 0.42) (0.00, 0.00) (0.40, 0.42) NA NA NA NA

ρ (0.13, 0.14) (0.09, 0.10) NA NA
R2

C (0.17, 0.18) (-0.32, 0.28) (0.27, 0.28) (0.15, 0.31) NA NA NA NA
R2

I (0.00, 0.00) (0.43, 0.44) (0.00, 0.00) (0.40, 0.43) NA NA NA NA

(continued)

School sample and 
parameters

Parameters for District

A B C E

Covariates
Y-1 y-1 Y-1 y-1 Y-1 y-1 Y-1

(range not available)a

(same for all models)

y-1

(same for all models)

(range not available)a

(same for all models) (same for all models)

Using Covariates to Improve Precision 

(same for all models)

Low-achieving schools
(same for all models)

(range not available)a

(same for all models) (same for all models)

Low-income schools
(same for all models)

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual student score lagged one year. ρ is the intra-class 
correlation for students within schools. R2

C and R2
I are the proportions of the school-level variance and the student-level variance reduced by the covariates, 

respectively. Nonzero estimates for R2
I  with school level covariates only are set equal to zero.  See text for more details.  Low-income schools are defined as 

those whose average proportion of students eligible for free lunch exceeds the district average.  Low-achieving schools in the district are defined as those 
whose average combined sum of reading and math pretest scores were less lower than the corresponding district average.
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Appendix Table A15 (continued)

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 66 students per school and 68 schools, on average.  Low-income 
schools in District B are defined as those identified by the district as being economically disadvantaged.  The low-income sample outcomes are based on data 
consisting of 63 students and 45 schools, on average.  The low-achieving sample outcomes are based on data consisting of 63 students and 34 schools, on 
average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 85 students per school and 171 schools, on average.  The low-
income sample outcomes are based on data consisting of 78 students per school and 120 schools, on average. The low-achieving sample outcomes are based 
on data consisting of 75 students per school and 82 schools, on average.

District E's outcomes are for the sixth grade and were computed from information available in unpublished tables prepared by Bloom, Bos, and Lee (1999).

aThere is only one year of follow-up data for District B.  Values for this year can be obtained from Appendix Table A14.

89 



 90

Appendix Table A16

Grade 8 Reading

Minimum Detectable Effect Size (MDES) by Number
of Randomized Schools (J) and Single Covariate

A C Mean

No covariate 0.57 0.64 0.61
   Y-1 0.28 0.21 0.24
   Y-2 0.32 0.27 0.30
   Y-3 NA 0.28 (0.28)
    y-1 0.38 0.18 0.28
    y-2 0.31 0.24 0.27
    y-3 NA 0.25 (0.25)

No covariate 0.39 0.44 0.42
   Y-1 0.19 0.14 0.17
   Y-2 0.22 0.18 0.20
   Y-3 NA 0.19 (0.19)
    y-1 0.26 0.12 0.19
    y-2 0.21 0.16 0.19
    y-3 NA 0.17 (0.17)

No covariate 0.32 0.36 0.34
   Y-1 0.16 0.11 0.13
   Y-2 0.18 0.15 0.16
   Y-3 NA 0.15 (0.15)
    y-1 0.21 0.10 0.15
    y-2 0.17 0.13 0.15
    y-3 NA 0.14 (0.14)

MDES(J=40)

MDES(J=60)

Using Covariates to Improve Precision

Covariate
Findings for District

MDES(J=20)

NOTES:  In the last column, means in parenthesis indicate that the reported values do
not include the values from both districts.  Y-1, Y-2, and Y-3 are mean school scores fo
the same grade lagged one, two, and three years, respectively. y-1, y-2, and y-3 are 
individual student scores lagged one, two, and three years, respectively. Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis 
test, 250 students per school, and a balanced (50/50) allocation of schools to treatmen
and control status. Entries are computed using the mean of the corresponding district-
level parameters.  See Appendix Table A19 for these parameters. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000
with 202 students per school and 17 schools, on average. District C's outcomes are 
based on tests administered in spring 2002 and spring 2003, with 297 students per 
school and 41 schools, on average.  
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Appendix Table A17

Grade 8 Reading

Minimum Detectable Effect Size for 40 Randomized Schools with
 Alternative Samples of Schools and Covariates

A C Mean
All schools
No covariate 0.39 0.44 0.42
 Y-1 0.19 0.14 0.17
 Y-1,Y-2 0.19 0.14 0.16
 y-1 0.26 0.12 0.19
 y-1,y-2 0.21 0.12 0.16
 Y-1,y-1 0.20 0.11 0.16
 Z-1 0.20 0.20 0.20
 z-1 0.27 0.19 0.23
 X 0.30 0.30 0.30
 X,Y-1 0.17 0.16 0.17
 X,y-1 0.23 0.12 0.18
Low-income schools
 Y-1 0.17 0.17 0.17
 y-1 0.26 0.14 0.20
Low-achieving schools
 Y-1 0.24 0.08 0.16
 y-1 0.25 0.07 0.16

School sample and covariates
Findings for District

Using Covariates to Improve Precision

NOTES: Y-1 and Y-2 are mean school scores for the same grade lagged one and two years, 
respectively. y-1 and y-2 are individual student scores lagged one and two years, respectively.  Z-1 and 
z-1 are mean school scores and individual scores in the previous year for a different test (with a math 
test as the pretest for reading outcomes and a reading test as the pretest for math outcomes). X is a 
vector of demographic characteristics, which differs across districts.  Low-income schools are defined
as those whose average proportion of students eligible for free lunch exceeds the district average.  
Low-achieving schools in the district are defined as those whose average combined sum of reading 
and math pretest scores were lower than the corresponding district average. Findings reflect: 
statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 250 students per 
school, and a balanced (50/50) allocation of schools to treatment and control status. 

District A's  outcomes are based on tests administered in spring 1999 and spring 2000, with 202 
students per school and 17 schools, on average.  The low-income sample outcomes are based on data 
consisting of 183 students and 11 schools, on average.  The low-achieving sample outcomes are 
based on data consisting of 158 students and 10 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 297 
students per school and 41 schools, on average.  The low-income sample outcomes are based on data 
consisting of 292 students per school and 29 schools, on average. The low-achieving sample 
outcomes are based on data consisting of 262 students per school and 16 schools, on average.
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Appendix Table A18

Grade 8 Reading

Minimum Detectable Effect Size (MDES) by Number of
Randomized Schools with Alternative Samples of  

Schools and Selected Covariates

(min, max) (min, max)
All schools
 Y-1 (0.18, 0.20) (0.09, 0.18)
 y-1 (0.22, 0.30) (0.10, 0.14)
Low-income schools
 Y-1 (0.14, 0.20) (0.09, 0.22)
 y-1 (0.21, 0.30) (0.11, 0.17)
Low-achieving schools
 Y-1 (0.21, 0.25) (0.08, 0.09)
 y-1 (0.16, 0.34) (0.05, 0.08)

Using Covariates to Improve Precision

Findings for District
School sample and covariate A C

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 

is the individual student score lagged one year. Low-income schools are defined 
as those whose average proportion of students eligible for free lunch exceeds the 
district average.  Low-achieving schools in the district are defined as those 
whose average combined sum of reading and math pretest scores were lower than 
the corresponding district average.  Findings reflect: statistical significance of 
0.05, statistical power of 0.80, a two-tail hypothesis test, 250 students per school, 
and a balanced (50/50) allocation of schools to treatment and control status.  

District A's outcomes are based on tests administered in spring 1999 and spring 
2000, with 202 students per school and 17 schools, on average.  The low-income 
sample outcomes are based on data consisting of 183 students and 11 schools, on 
average.  The low-achieving sample outcomes are based on data consisting of 
158 students and 10 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 
2003, with 297 students per school and 41 schools, on average.  The low-income 
sample outcomes are based on data consisting of 292 students per school and 29 
schools, on average. The low-achieving sample outcomes are based on data 
consisting of 262 students per school and 16 schools, on average.
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Appendix Table A19

Grade 8 Reading

Minimum Detectable Effect Size (MDES) by Number

R2
C R2

I R2
C R2

I

Y-1 0.77 0.00 0.91 0.00
Y-2 0.69 0.00 0.84 0.00
Y-3 NA NA 0.83 0.00
Y-1, Y-2 0.79 0.00 0.91 0.00
Y-2, Y-3 NA NA 0.84 0.00

y-1 0.57 0.41 0.93 0.58
y-2 0.72 0.41 0.87 0.49
y-3 NA NA 0.85 0.42
y-1, y-2 0.73 0.50 0.93 0.62
y-2, y-3 NA NA 0.89 0.53

Y-1, y-1 0.75 0.41 0.94 0.58
Z-1 0.75 0.00 0.81 0.00
z-1 0.54 0.33 0.82 0.38
X 0.43 0.11 0.55 0.23
X, Y-1 0.83 0.11 0.87 0.23
X, y-1 0.65 0.43 0.93 0.60

0.23

Covariates
A C

Other covariates

Using Covariates to Improve Precision

Findings for District

Proportion of variance reduced (R2
C and R2

I)

Intra-class correlation with no covariates (ρ)

School-level pretests only

Student-level pretests only

0.18

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and 
three years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and 
three years, respectively. X is a vector of demographic characteristics, which differs across 
districts. Z-1 and z-1 are mean school scores and individual scores in the previous year for a 
different test (with a math test as the pretest for reading outcomes and a reading test as the 
pretest for math outcomes). R2

C and R2
I are the average proportion of the school-level 

variance and the student-level variance reduced by the covariates, respectively.  The averages 
are computed as the mean of the corresponding district-level parameters.  Nonzero estimates 
for R2

I with school-level covariates only are set equal to zero.  See text for more details.    

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 
202 students per school and 17 schools, on average.  District C's outcomes are based on tests 
administered in spring 2002 and spring 2003, with 297 students per school and 41 schools, on 
average.  



 94

Appendix Table A20

Grade 8 Reading

Minimum Detectable Effect Size (MDES) by Number
and Selected Covariates

(min, max) (min, max) (min, max) (min, max)
All schools
ρ (0.17, 0.20) (0.22, 0.25)
R2

C (0.76, 0.79) (0.47, 0.67) (0.85, 0.97) (0.90, 0.95)

R2
I (0.00, 0.00) (0.38, 0.44) (0.00, 0.00) (0.58, 0.59)

ρ (0.03, 0.05) (0.07, 0.08)
R2

C (0.14, 0.28) (-0.96, -0.91) (0.29, 0.92) (0.56, 0.82)

R2
I (0.00, 0.00) (0.32, 0.38) (0.00, 0.00) (0.58, 0.59)

ρ (0.07, 0.13) (0.01, 0.01)
R2

C (0.27, 0.41) (-0.11, 0.61) (0.47, 0.53) (0.22, 0.79)

R2
I (0.00, 0.00) (0.33, 0.40) (0.00, 0.00) (0.54, 0.59)

Y-1 y-1

Low-achieving schools

(same for all models) (same for all models)

Low-income schools

Y-1 y-1

(same for all models) (same for all models)

(same for all models) (same for all models)

Using Covariates to Improve Precision

Parameters for District

Covariates

School sample and 
parameters A C

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual
student score lagged one year.  ρ is the intra-class correlation for students within schools.  R2

C and
R2

I are the proportions of the school-level variance and the student-level variance reduced by the 
covariates, respectively.  Nonzero estimates for R2

I with school-level covariates only are set equal
to zero.  See text for more details.  Low-income schools are defined as those whose average 
proportion of students eligible for free lunch exceeds the district average.  Low-achieving schools
in the district are defined as those whose average combined sum of reading and math pretest 
scores were lower than the corresponding district average.

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 202 
students per school and 17 schools, on average.  The-low income sample outcomes are based on 
data consisting of 183 students and 11 schools, on average.  The low-achieving sample outcomes 
are based on data consisting of 158 students and 10 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 297 
students per school and 41 schools, on average.  The low-income sample outcomes are based on 
data consisting of 292 students per school and 29 schools, on average. The low-achieving sample 
outcomes are based on data consisting of 262 students per school and 16 schools, on average.
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Appendix Table A21

Grade 8 Math

Minimum Detectable Effect Size (MDES) by Number
of Randomized Schools (J) and Single Covariate

A C Mean

No covariate 0.53 0.69 0.61
   Y-1 0.26 0.29 0.28
   Y-2 0.34 0.37 0.35
   Y-3 0.36 0.37 0.37
    y-1 0.28 0.29 0.28
    y-2 0.29 0.36 0.33
    y-3 0.31 0.40 0.36

No covariate 0.36 0.47 0.42
   Y-1 0.18 0.20 0.19
   Y-2 0.23 0.25 0.24
   Y-3 0.25 0.26 0.25
    y-1 0.19 0.20 0.19
    y-2 0.20 0.25 0.22
    y-3 0.21 0.28 0.24

No covariate 0.29 0.38 0.34
   Y-1 0.14 0.16 0.15
   Y-2 0.19 0.20 0.20
   Y-3 0.20 0.21 0.20
    y-1 0.15 0.16 0.16
    y-2 0.16 0.20 0.18
    y-3 0.17 0.22 0.20

MDES(J=40)

MDES(J=60)

Using Covariates to Improve Precision

Covariate
Findings for District

MDES(J=20)

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, 
and three years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, 
two, and three years, respectively. Findings reflect: statistical significance of 0.05, 
statistical power of 0.80, a two-tail hypothesis test, 250 students per school, and a 
balanced (50/50) allocation of schools to treatment and control status. Entries are 
computed using the mean of the corresponding district-level parameters.  See 
Appendix Table A24 for these parameters.

District A's outcomes are based on tests administered in spring 1999 and spring 2000, 
with 202 students per school and 17 schools, on average. District C's outcomes are 
based on tests administered in spring 2002 and spring 2003, with 297 students per 
school and 41 schools, on average.  
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Appendix Table A22

Grade 8 Math

Minimum Detectable Effect Size for 40 Randomized Schools with
 Alternative Samples of Schools and Covariates

A C Mean
All schools
No covariate 0.36 0.47 0.42
 Y-1 0.18 0.20 0.19
 Y-1,Y-2 0.18 0.20 0.19
 y-1 0.19 0.20 0.19
 y-1,y-2 0.17 0.20 0.19
 Y-1,y-1 0.16 0.18 0.17
 Z-1 0.18 0.20 0.19
 z-1 0.19 0.20 0.19
 X 0.27 0.34 0.31
 X,Y-1 0.17 0.22 0.19
 X,y-1 0.17 0.20 0.19
Low-income schools
 Y-1 0.19 0.24 0.21
 y-1 0.21 0.24 0.23
Low-achieving schools
 Y-1 0.20 0.17 0.18
 y-1 0.21 0.13 0.17

School sample and covariates
Findings for District

Using Covariates to Improve Precision

NOTES: Y-1 and Y-2 are mean school scores for the same grade lagged one and two years, 
respectively. y-1 and y-2 are individual student scores lagged one and two years, respectively.  Z-1 

and z-1 are mean school scores and individual scores in the previous year for a different test (with a 
math test as the pretest for reading outcomes and a reading test as the pretest for math outcomes). X 
is a vector of demographic characteristics, which differs across districts.  Low-income schools are 
defined as those whose average proportion of students eligible for free lunch exceeds the district 
average.  Low-achieving schools in the district are defined as those whose average combined sum 
of reading and math pretest scores were lower than the corresponding district average.  Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 250 
students per school, and a balanced (50/50) allocation of schools to treatment and control status. 

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 202 
students per school and 17 schools, on average.  The low-income sample outcomes are based on 
data consisting of 183 students and 11 schools, on average.  The low-achieving sample outcomes 
are based on data consisting of 158 students and 10 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 297 
students per school and 41 schools, on average.  The low-income sample outcomes are based on 
data consisting of 292 students per school and 29 schools, on average. The low-achieving sample 
outcomes are based on data consisting of 262 students per school and 16 schools, on average.
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Appendix Table A23

Grade 8 Math

Minimum Detectable Effect Size Ranges for 40 
Randomized Schools with Alternative

Samples of Schools and Selected Covariates

(min, max) (min, max)
All schools
 Y-1 (0.17, 0.18) (0.13, 0.26)
 y-1 (0.15, 0.22) (0.17, 0.23)
Low-income schools
 Y-1 (0.17, 0.21) (0.14, 0.32)
 y-1 (0.16, 0.26) (0.18, 0.29)
Low-achieving schools
 Y-1 (0.20, 0.20) (0.16, 0.17)
 y-1 (0.15, 0.28) (0.11, 0.14)

Using Covariates to Improve Precision

School sample and covariate A C
Findings for District

NOTES: Y-1 is the mean school score for the same grade lagged one year, 
and y-1 is the individual student score lagged one year.  Low-income schools 
are defined as those whose average proportion of students eligible for free 
lunch exceeds the district average.  Low-achieving schools in the district are 
defined as those whose average combined sum of reading and math pretest 
scores were lower than the corresponding district average.  Findings reflect: 
statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis 
test, 250 students per school, and a balanced (50/50) allocation of schools to 
treatment and control status.  

District A's outcomes are based on tests administered in spring 1999 and 
spring 2000, with 202 students per school and 17 schools, on average.  The 
low-income sample outcomes are based on data consisting of 183 students 
and 11 schools, on average.  The low-achieving sample outcomes are based 
on data consisting of 158 students and 10 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and 
spring 2003, with 297 students per school and 41 schools, on average.  The 
low-income sample outcomes are based on data consisting of 292 students 
per school and 29 schools, on average. The low-achieving sample outcomes 
are based on data consisting of 262 students per school and 16 schools, on 
average.
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Appendix Table A24

Grade 8 Math

Parameter Values for Selected Covariates

R2
C R2

I R2
C R2

I

Y-1 0.78 0.00 0.83 0.00
Y-2 0.60 0.00 0.73 0.00
Y-3 0.54 0.00 0.72 0.00
Y-1, Y-2 0.78 0.00 0.83 0.00
Y-2, Y-3 0.71 0.00 0.73 0.00

y-1 0.73 0.55 0.83 0.55
y-2 0.70 0.49 0.73 0.48
y-3 0.67 0.37 0.66 0.38
y-1, y-2 0.78 0.61 0.82 0.59
y-2, y-3 0.77 0.53 0.74 0.50

Y-1, y-1 0.82 0.55 0.86 0.55
Z-1 0.78 0.00 0.83 0.00
z-1 0.73 0.55 0.83 0.55
X 0.45 0.10 0.48 0.20
X, Y-1 0.80 0.10 0.79 0.20
X, y-1 0.77 0.56 0.83 0.57

Other covariate models

Parameters for District

Intra-class correlation with no covariates (ρ)

Proportion of variance reduced (R2
C and R2

I)

School-level pretests only

Student-level pretests only

Using Covariates to Improve Precision

0.16 0.27

Covariates
A C

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three 
years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three 
years, respectively. X is a vector of demographic characteristics, which differs across districts. 
Z-1 and z-1 are mean school scores and individual scores in the previous year for a different test 
(with a math test as the pretest for reading outcomes and a reading test as the pretest for math 
outcomes). R2

C and R2
I are the average proportion of the school-level variance and the student-

level variance reduced by the covariates, respectively.  The averages are computed as the mean 
of the corresponding district-level parameters.  Nonzero estimaties for R2

I with school-level 
covariates only are set equal to zero.  See text for more details.

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 202 
students per school and 17 schools, on average.  District C's outcomes are based on tests 
administered in spring 2002 and spring 2003, with 297 students per school and 41 schools, on 
average.  
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Appendix Table A25

Grade 8 Math

Parameter Ranges for Alternative School Samples
and Selected Covariates

(min, max) (min, max) (min, max) (min, max)
All schools
ρ (0.15, 0.16) (0.25, 0.28)
R2

C (0.78, 0.78) (0.63, 0.83) (0.72, 0.93) (0.78, 0.87)

R2
I (-0.00, 0.00) (0.54, 0.56) (-0.00, 0.00) (0.54, 0.56)

ρ (0.06, 0.06) (0.10, 0.12)
R2

C (0.23, 0.48) (-0.30, 0.50) (-0.01, 0.81) (0.19, 0.62)

R2
I (-0.00, 0.00) (0.48, 0.51) (-0.00, 0.00) (0.50, 0.53)

ρ (0.06, 0.10) (0.04, 0.05)
R2

C (0.31, 0.54) (0.05, 0.62) (0.13, 0.43) (0.38, 0.72)

R2
I (0.00, 0.00) (0.51, 0.52) (-0.00, 0.00) (0.49, 0.54)

Low-income schools
(same for all models) (same for all models)

(same for all models)

School sample and 
parameters A C

Y-1

(same for all models) (same for all models)

Using Covariates to Improve Precision

Parameters for District

Covariates
y-1 Y-1 y-1

Low-achieving schools

(same for all models)

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual 
student score lagged one year.  ρ is the intra-class correlation for students within schools.  R2

C and 
R2

I are the proportions of the school-level variance and the student-level variance reduced by the 
covariates, respectively.  Nonzero estimates for R2

I with school-level covariates only are set to 
zero.  See text for more details.  Low-income schools are defined as those whose average 
proportion of students eligible for free lunch exceeds the district average.  Low-achieving schools 
in the district are defined as those whose average combined sum of reading and math pre-test 
scores were lower than the corresponding district average.

District A's outcomes are based on tests administered in spring 1999 and spring 2000, with 202 
students per school and 17 schools, on average.  The low-income sample outcomes are based on 
data consisting of 183 students and 11 schools, on average.  The low-achieving sample outcomes 
are based on data consisting of 158 students and 10 schools, on average.

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 297 
students per school and 41 schools, on average.  The low-income sample outcomes are based on 
data consisting of 292 students per school and 29 schools, on average. The low-achieving sample 
outcomes are based on data consisting of 262 students per school and 16 schools, on average.
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Grade 10 Reading

Minimum Detectable Effect Size (MDES) by Number
of Randomized Schools (J) and Single Covariate

A C Mean

No covariate 0.53 0.71 0.62
   Y-1 0.16 0.17 0.16
   Y-2 0.23 0.24 0.24
   Y-3 NA 0.26 (0.26)
    y-1 0.11 0.19 0.15
    y-2 NA 0.25 (0.25)
    y-3 NA 0.25 (0.25)

No covariate 0.36 0.49 0.42
   Y-1 0.11 0.12 0.11
   Y-2 0.16 0.16 0.16
   Y-3 NA 0.18 (0.18)
    y-1 0.08 0.13 0.10
    y-2 NA 0.17 (0.17)
    y-3 NA 0.17 (0.17)

No covariate 0.29 0.39 0.34
   Y-1 0.09 0.10 0.09
   Y-2 0.13 0.13 0.13
   Y-3 NA 0.14 (0.14)
    y-1 0.06 0.11 0.08
    y-2 NA 0.14 (0.14)
    y-3 NA 0.14 (0.14)

MDES(J=40)

MDES(J=60)

Using Covariates to Improve Precision

Appendix Table A26

Covariate
Findings for District

MDES(J=20)

NOTES:  In the last column, means in parenthesis indicate that the reported values do
not include the values from both districts.  Y-1, Y-2, and Y-3 are mean school scores fo
the same grade lagged one, two, and three years, respectively. y-1, y-2, and y-3 are 
individual student scores lagged one, two, and three years, respectively. Findings 
reflect: statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis
test, 250 students per school, and a balanced (50/50) allocation of schools to treatmen
and control status. Entries are computed using the mean of the corresponding district
level parameters. See Appendix Table A29 for these parameters.  

District A's outcomes are based on tests administered in spring 1997 and spring 1998
with 229 students per school and 12 schools, on average. District C's outcomes are 
based on tests administered in spring 2002 and spring 2003, with 265 students per 
school and 32 schools, on average.  
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Appendix Table A27

Grade 10 Reading

Minimum Detectable Effect Size for 40 Randomized Schools with
 Alternative Samples of Schools and Covariates

A C Mean
All schools
No covariate 0.36 0.49 0.42
 Y-1 0.11 0.12 0.11
 Y-1,Y-2 0.11 0.11 0.11
 y-1 0.08 0.13 0.10
 y-1,y-2 NA 0.11 (0.11)
 Y-1,y-1 0.05 0.08 0.07
 Z-1 0.15 0.20 0.18
 z-1 0.18 0.23 0.21
 X 0.22 0.32 0.27
 X,Y-1 0.07 0.14 0.11
 X,y-1 0.07 0.11 0.09
Low-income schools
 Y-1 NA 0.14 (0.14)
 y-1 NA 0.12 (0.12)
Low-achieving schools
 Y-1 NA 0.13 (0.13)
 y-1 NA 0.11 (0.11)

Using Covariates to Improve Precision

School sample and 
covariates

Findings for District

NOTES:  In the last column, means in parenthesis indicate that the reported values do not include the 
values from both districts.  Y-1 and Y-2 are mean school scores for the same grade lagged one and two years, 
respectively. y-1 and y-2 are individual student scores lagged one and two years, respectively.  Z-1 and z-1 are 
mean school scores and individual scores in the previous year for a different test (with a math test as the 
pretest for reading outcomes and a reading test as the pretest for math outcomes). X is a vector of 
demographic characteristics, which differs across districts.  Low-income schools are defined as those whose 
average proportion of students eligible for free lunch exceeds the district average.  Low-achieving schools 
in the district are defined as those whose average combined sum of reading and math pretest scores were 
lower than the corresponding district average. Findings reflect: statistical significance of 0.05, statistical 
power of 0.80, a two-tail hypothesis test, 250 students per school, and a balanced (50/50) allocation of 
schools to treatment and control status. 

District A's outcomes are based on tests administered in spring 1997 and spring 1998, with 229 students per 
school and 12 schools, on average. Outcomes for low-income and low-achieving schools are not presented 
due to the small number of schools available. 

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 265 students per 
school and 32 schools, on average.  The low-income sample outcomes are based on data consisting of 237 
students per school and 20 schools, on average. The low-achieving sample outcomes are based on data 
consisting of 204 students per school and 11 schools, on average.
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Appendix Table A28

Grade 10 Reading

Minimum Detectable Effect Size Ranges for 40 
Randomized Schools with Alternative Samples

of Schools and Selected Covariates

(min, max) (min, max)
All schools
 Y-1 (0.10, 0.11) (0.10, 0.13)
 y-1 (0.06, 0.09) (0.13, 0.14)
Low-income schools
 Y-1 NA NA (0.13, 0.15)
 y-1 NA NA (0.12, 0.12)
Low-achieving schools
 Y-1 NA NA (0.11, 0.13)
 y-1 NA NA (0.10, 0.11)

Using Covariates to Improve Precision

Findings for District
School sample and covariate A C

NOTES: Y-1 is the mean school score for the same grade lagged one year, 
and y-1 is the individual student score lagged one year.  Low-income schools 
are defined as those whose average proportion of students eligible for free 
lunch exceeds the district average.  Low-achieving schools in the district are 
defined as those whose average combined sum of reading and math pretest 
scores were lower than the corresponding district average.  Findings reflect: 
statistical significance of 0.05, statistical power of 0.80, a two-tail 
hypothesis test, 250 students per school, and a balanced (50/50) allocation 
of schools to treatment and control status.  

District A's outcomes are based on tests administered in spring 1997 and 
spring 1998, with 229 students per school and 12 schools, on average. 
Outcomes for low-income and low-achieving schools are not presented due 
to the small number of schools available. 

District C's outcomes are based on tests administered in spring 2002 and 
spring 2003, with 265 students per school and 32 schools, on average.  The 
low-income sample outcomes are based on data consisting of 237 students 
per school and 20 schools, on average. The low-achieving sample outcomes 
are based on data consisting of 204 students per school and 11 schools, on 
average.
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Appendix Table A29

Grade 10 Reading

Parameter Values for Selected Covariates

R2
C R2

I R2
C R2

I

Y-1 0.93 0.00 0.95 0.00
Y-2 0.82 0.00 0.90 0.00
Y-3 NA NA 0.88 0.00
Y-1, Y-2 0.93 0.00 0.96 0.00
Y-2, Y-3 NA NA 0.91 0.00

y-1 0.96 0.56 0.93 0.56
y-2 NA NA 0.88 0.45
y-3 NA NA 0.88 0.42
y-1, y-2 NA NA 0.96 0.60
y-2, y-3 NA NA 0.92 0.49

Y-1, y-1 0.99 0.56 0.98 0.56
Z-1 0.83 0.00 0.84 0.00
z-1 0.76 0.33 0.77 0.33
X 0.63 0.18 0.59 0.19
X, Y-1 0.97 0.18 0.92 0.19
X, y-1 0.97 0.57 0.95 0.58

Using Covariates to Improve Precision

0.15 0.29

Covariates
A C

Other covariates

Proportion of variance reduced (R2
C and R2

I)

Intra-class correlation with no covariates (ρ)

Parameters for District

School-level pretests only

Student-level pretests only

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three years, 
respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three years, respectively. X 
is a vector of demographic characteristics, which differs across districts. Z-1 and z-1 are mean school 
scores and individual scores in the previous year for a different test (with a math test as the pretest for 
reading outcomes and a reading test as the pretest for math outcomes). R2

C and R2
I are the average 

proportion of the school-level variance and the student-level variance reduced by the covariates, 
respectively.  The averages are computed as the mean of the corresponding district-level parameters.  
Nonzero estimates for R2

I with school-level covariates only are set equal to zero.  See text for more 
details.  

District A's outcomes are based on tests administered in spring 1997 and spring 1998, with 229 students 
per school and 12 schools, on average.  District C's outcomes are based on tests administered in spring 
2002 and spring 2003, with 265 students per school and 32 schools, on average.  
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Appendix Table A30

Grade 10 Reading

Parameter Ranges for Alternative School Samples
and Selected Covariates

(min, max) (min, max) (min, max) (min, max)
All schools
ρ (0.14, 0.17) (0.27, 0.30)
R2

C (0.93, 0.94) (0.94, 0.98) (0.94, 0.96) (0.93, 0.93)

R2
I (0.00, 0.00) (0.54, 0.57) (0.00, 0.00) (0.55, 0.57)

ρ NA NA (0.13, 0.15)
R2

C NA NA NA NA (0.83, 0.87) (0.87, 0.91)

R2
I NA NA NA NA (0.00, 0.00) (0.50, 0.54)

ρ NA NA (0.02, 0.03)
R2

C NA NA NA NA (-0.14, 0.56) (0.17, 0.63)

R2
I NA NA NA NA (0.00, 0.00) (0.47, 0.47)

Low-achieving schools
(same for all models) (same for all models)

Low-income schools
(same for all models) (same for all models)

Covariates

(same for all models) (same for all models)

Y-1 y-1 Y-1 y-1

Using Covariates to Improve Precision

School sample and 
parameters A C

Parameters for District

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the 
individual student score lagged one year.  ρ is the intra-class correlation for students within 
schools.  R2

C and R2
I are the proportions of the school-level variance and the student-level 

variance reduced by the covariates, respectively.  Nonzero estimates for R2
I  with school-level 

covariates only are set equal to zero.  See text for more details.  Low-income schools are 
defined as those whose average proportion of students eligible for free lunch exceeds the 
district average.  Low-achieving schools in the district are defined as those whose average 
combined sum of reading and math pretest scores were lower than the corresponding district 
average.

District A's outcomes are based on tests administered in spring 1997 and spring 1998, with 229 
students per school and 12 schools, on average. Outcomes for low-income and low-achieving 
schools are not presented due to the small number of schools available. 

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 265 
students per school and 32 schools, on average.  The low-income sample outcomes are based 
on data consisting of 237 students per school and 20 schools, on average. The low-achieving 
sample outcomes are based on data consisting of 204 students per school and 11 schools, on 
average.
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Appendix Table A31

Grade 10 Math

Minimum Detectable Effect Size (MDES) by Number
of Randomized Schools (J) and Single Covariate

A C Mean

No covariate 0.49 0.66 0.58
   Y-1 0.11 0.21 0.16
   Y-2 0.17 0.25 0.21
   Y-3 NA 0.29 (0.29)
    y-1 0.19 0.26 0.23
    y-2 0.22 0.30 0.26
    y-3 NA 0.30 (0.30)

No covariate 0.34 0.45 0.40
   Y-1 0.08 0.15 0.11
   Y-2 0.12 0.17 0.15
   Y-3 NA 0.20 (0.20)
    y-1 0.13 0.18 0.15
    y-2 0.15 0.21 0.18
    y-3 NA 0.21 (0.21)

No covariate 0.27 0.37 0.32
   Y-1 0.06 0.12 0.09
   Y-2 0.10 0.14 0.12
   Y-3 NA 0.16 (0.16)
    y-1 0.10 0.15 0.12
    y-2 0.12 0.17 0.14
    y-3 NA 0.17 (0.17)

MDES(J=40)

MDES(J=60)

Using Covariates to Improve Precision

Covariates
Findings for District

MDES(J=20)

NOTES: In the last column, means in parenthesis indicate that the reported values do not 
include the values from both districts. Y-1, Y-2, and Y-3 are mean school scores for the 
same grade lagged one, two, and three years, respectively. y-1, y-2, and y-3 are individual 
student scores lagged one, two, and three years, respectively. Findings reflect: statistical 
significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 250 students per 
school, and a balanced (50/50) allocation of schools to treatment and control status. 
Entries are computed using the mean of the corresponding district-level parameters. See 
Appendix Table A34 for these parameters.  

District A's outcomes are based on tests administered in spring 1997 and spring 1998, 
with 229 students per school and 12 schools, on average.  District C's outcomes are based 
on tests administered in spring 2002 and spring 2003, with 265 students per school and 
32 schools, on average.  
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Appendix Table A32

Grade 10 Math

Minimum Detectable Effect Size for 40 Randomized Schools with
Alternative Samples of Schools and Covariates

A C Mean
All schools
No covariate 0.34 0.45 0.40
 Y-1 0.08 0.15 0.11
 Y-1,Y-2 0.07 0.14 0.10
 y-1 0.13 0.18 0.15
 y-1,y-2 0.11 0.15 0.13
 Y-1,y-1 0.07 0.12 0.10
 Z-1 0.08 0.15 0.11
 z-1 0.13 0.18 0.15
 X 0.23 0.31 0.27
 X,Y-1 0.09 0.16 0.13
 X,y-1 0.12 0.15 0.14
Low-income schools
 Y-1 NA 0.14 (0.14)
 y-1 NA 0.18 (0.18)
Low-achieving schools
 Y-1 NA 0.11 (0.11)
 y-1 NA 0.11 (0.11)

School sample and covariates
Findings for District

Using Covariates to Improve Precision

NOTES:  In the last column, means in parenthesis indicate that the reported values do not include the 
values from both districts. Y-1 and Y-2 are mean school scores for the same grade lagged one and two 
years, respectively. y-1 and y-2 are individual student scores lagged one and two years, respectively.  Z-1 

and z-1 are mean school scores and individual scores in the previous year for a different test (with a 
math test as the pretest for reading outcomes and a reading test as the pretest for math outcomes). X is 
a vector of demographic characteristics, which differs across districts.  Low-income schools are 
defined as those whose average proportion of students eligible for free lunch exceeds the district 
average.  Low-achieving schools in the district are defined as those whose average combined sum of 
reading and math pretest scores were lower than the corresponding district average.  Findings reflect: 
statistical significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 250 students per 
school, and a balanced (50/50) allocation of schools to treatment and control status.  

District A's outcomes are based on tests administered in spring 1997 and spring 1998, with 229 
students per school and 12 schools, on average. Outcomes for low-income and low-achieving schools 
are not presented due to the small number of schools available. 

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 265 
students per school and 32 schools, on average.  The low-income sample outcomes are based on data 
consisting of 237 students per school and 20 schools, on average. The low-achieving sample outcomes 
are based on data consisting of 204 students per school and 11 schools, on average.
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Appendix Table A33

Grade 10 Math

Minimum Detectable Effect Size Ranges for 40 
Randomized Schools with Alternative Samples

of Schools and Selected Covariates

(min, max) (min, max)
All schools
 Y-1 (0.07, 0.08) (0.11, 0.18)
 y-1 (0.09, 0.16) (0.17, 0.19)
Low-income schools
 Y-1 NA NA (0.12, 0.16)
 y-1 NA NA (0.16, 0.19)
Low-achieving schools
 Y-1 NA NA (0.05, 0.13)
 y-1 NA NA (0.10, 0.11)

Using Covariates to Improve Precision

Findings for District
School sample and covariate A C

NOTES: Y-1 is the mean school score for the same grade lagged one year, and 
y-1 is the individual student score lagged one year. Low-income schools are 
defined as those whose average proportion of students eligible for free lunch 
exceeds the district average.  Low-achieving schools in the district are defined 
as those whose average combined sum of reading and math pretest scores were 
lower than the corresponding district average.  Findings reflect: statistical 
significance of 0.05, statistical power of 0.80, a two-tail hypothesis test, 250 
students per school, and a balanced (50/50) allocation of schools to treatment 
and control status.  

District A's outcomes are based on tests administered in spring 1997 and 
spring 1998, with 229 students per school and 12 schools, on average. 
Outcomes for low-income and low-achieving schools are not presented due to 
the small number of schools available. 

District C's outcomes are based on tests administered in spring 2002 and 
spring 2003, with 265 students per school and 32 schools, on average.  The 
low-income sample outcomes are based on data consisting of 237 students per 
school and 20 schools, on average. The low-achieving sample outcomes are 
based on data consisting of 204 students per school and 11 schools, on 
average.
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Appendix Table A34

Grade 10 Math

Parameter Values for Selected Covariates

R2
C R2

I R2
C R2

I

Y-1 0.97 0.00 0.91 0.00
Y-2 0.90 0.00 0.86 0.00
Y-3 NA NA 0.82 0.00
Y-1, Y-2 0.98 0.00 0.92 0.00
Y-2, Y-3 NA NA 0.86 0.00

y-1 0.86 0.47 0.85 0.39
y-2 0.82 0.39 0.80 0.35
y-3 NA NA 0.80 0.32
y-1, y-2 0.91 0.52 0.90 0.46
y-2, y-3 NA NA 0.84 0.38

Y-1, y-1 0.97 0.47 0.93 0.39
Z-1 0.97 0.00 0.91 0.00
z-1 0.86 0.47 0.85 0.39
X 0.55 0.15 0.55 0.16
X, Y-1 0.95 0.15 0.89 0.16
X, y-1 0.89 0.49 0.89 0.42

Other covariates

Using Covariates to Improve Precision

School-level pretests only

Student-level pretests only

Proportion of variance reduced (R2
C and R2

I)

0.13 0.25
Intra-class correlation with no covariates (ρ)

Covariates
A C

Parameters for District

NOTES: Y-1, Y-2, and Y-3 are mean school scores for the same grade lagged one, two, and three
years, respectively. y-1, y-2, and y-3 are individual student scores lagged one, two, and three 
years, respectively. X is a vector of demographic characteristics, which differs across districts. 
Z-1 and z-1 are mean school scores and individual scores in the previous year for a different test 
(with a math test as the pretest for reading outcomes and a reading test as the pretest for math 
outcomes). R2

C and R2
I are the average proportion of the school-level variance and the student-

level variance reduced by the covariates, respectively.  The averages are computed as the mean
of the corresponding district-level parameters.  Nonzero estimates for R2

I with school-level 
covariates only are set equal to zero.  See text for more details.

District A's outcomes are based on tests administered in spring 1997 and spring 1998, with 229
students per school and 12 schools, on average.  District C's outcomes are based on tests 
administered in spring 2002 and spring 2003, with 265 students per school and 32 schools, on 
average.  
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Appendix Table A35

Grade 10 Math

Parameter Ranges for Alternative School Samples 
and Selected Covariates

(min, max) (min, max) (min, max) (min, max)
All schools
ρ (0.13, 0.14) (0.25, 0.25)
R2

C (0.96, 0.99) (0.78, 0.95) (0.86, 0.95) (0.83, 0.86)

R2
I (0.00, 0.00) (0.45, 0.49) (0.00, 0.00) (0.36, 0.43)

ρ NA NA (0.11, 0.13)
R2

C NA NA NA NA (0.77, 0.89) (0.67, 0.75)

R2
I NA NA NA NA (0.00, 0.00) (0.29, 0.36)

ρ NA NA (0.01, 0.03)
R2

C NA NA NA NA (-0.13, 1.03) (0.31, 0.57)

R2
I NA NA NA NA (0.00, 0.00) (0.26, 0.29)

y-1 Y-1 y-1

Low-achieving schools

(same for all models) (same for all models)

Y-1

(same for all models) (same for all models)

Low-income schools
(same for all models) (same for all models)

Covariates

Parameters for District

Using Covariates to Improve Precision

School sample and 
parameters A C

NOTES: Y-1 is the mean school score for the same grade lagged one year, and y-1 is the individual 
student score lagged one year.  ρ is the intra-class correlation for students within schools.  R2

C and R2
I 

are the proportions of the school-level variance and the student-level variance reduced by the 
covariates, respectively.  Nonzero estimates for R2

I  with school-level covariates only are set equal to 
zero.  See text for more details. Low-income schools are defined as those whose average proportion of 
students eligible for free lunch exceeds the district average.  Low-achieving schools in the district are 
defined as those whose average combined sum of reading and math pretest scores were lower than the 
corresponding district average.

District A's outcomes are based on tests administered in spring 1997 and spring 1998, with 229 
students per school and 12 schools, on average. Outcomes for low-income and low-achieving schools 
are not presented due to the small number of schools available. 

District C's outcomes are based on tests administered in spring 2002 and spring 2003, with 265 
students per school and 32 schools, on average.  The low-income sample outcomes are based on data 
consisting of 237 students per school and 20 schools, on average. The low-achieving sample outcomes 
are based on data consisting of 204 students per school and 11 schools, on average.
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