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Abstract 

This paper provides practical guidance for researchers who are designing studies 
that randomize groups to measure the impacts of interventions on children. To do so, the 
paper: (1) provides new empirical information about the values of parameters that influence 
the precision of impact estimates (intra-class correlations and R-squares); (2) examines the 
implications of planning group-randomized studies for three-level hierarchical situations, 
using empirical information obtained by estimating two-level hierarchical models (which 
under many conditions appears to not be problematic); and (3) assesses the implications of 
the uncertainty that exists when the design of group-randomized studies is based on esti-
mates of intra-class correlations. Data for the paper come from two studies: the Chicago 
Literacy Initiative: Making Better Early Readers study (CLIMBERs) and the School Break-
fast Pilot Project (SBPP). The analysis sample from CLIMBERs comprised 430 4-year old 
children from 47 preschool classrooms in 23 Chicago public schools. The analysis sample 
from the SBPP study comprised 1,151 third-graders from 233 classrooms in 111 schools in 
six school districts. 
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Part I 
Introduction 

This paper addresses several empirical issues in the design of group-randomized 
studies to measure the effects of interventions on outcomes for children. Group-
randomized studies have recently become a popular way to measure the effects of inter-
ventions (see Boruch and Foley, 2000, for a review and Boruch, 2005, for detailed ex-
amples). This approach randomizes intact groups, such as communities, hospitals, 
firms, schools, or child care centers, to treatment and control groups, data for which can 
provide unbiased estimates of intervention effects. In this way, randomizing groups is 
similar to randomizing individuals. 

Most early applications of group randomization were in the health sciences. 
Consequently, the two existing textbooks on the approach focus on health research 
(Donner and Klar, 2000; Murray, 1998). Recently, several papers have attempted to 
make the approach accessible to other researchers (for example, Bloom, 2005; Scho-
chet, 2005; Murray and Blitstein, 2003; Raudenbush, 1997). In addition, the current 
emphasis on randomized trials in education stimulated by the U.S. Department of Edu-
cation’s Institute of Education Sciences has prompted a series of large-scale group-
randomized studies (for example, American Institutes for Research and MDRC, 2006). 
Correspondingly, a recent issue of Education Evaluation and Policy Analysis is com-
prised entirely of articles on the design of group-randomized studies (Raudenbush, Mar-
tinez, and Spybrook, 2007; Bloom, Richburg-Hayes, and Black, 2007; Hedges and 
Hedberg, 2007). 

The core design decisions for group-randomized studies involve choosing: (1) 
the total number of groups to randomize; (2) the average number of individuals per 
group to observe; (3) the proportion of groups to allocate to treatment or control status; 
(4) what variables, if any, to use for covariate adjustments; and (5) what categories, if 
any, by which to block groups before they are randomized. Further design decisions are 
required for any given study, based on its specific goals and context. 

Previous authors (for example, Raudenbush, 1997; Murray, 1998; Donner and 
Klar, 2000; Bloom, 2005) have presented the statistical framework of group-
randomized studies. Group-randomization has a multilevel variance and covariance 
structure with individual subjects (level 1) clustered in randomized groups (level 2). For 
example, studies that measure impacts on students (level 1) by randomizing schools 
(level 2) have at least a two-level variance structure. The level 1 variance represents 
how an outcome varies across individual subjects (students) within randomized groups 
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(schools). The level 2 variance represents how the mean value of the individual out-
come varies across randomized groups. The level 1 variance is often designated as σ2, 
and the level 2 variance is often designated as τ2. Using this framework, the total indi-
vidual variance across all subjects in all randomized groups equals τ2+σ2.  

To design group-randomized studies that can attain desired levels of precision 
requires information about the variance at each level of a given situation. A simple two-
level structure with individuals clustered in randomized groups requires knowledge of 
two variances, σ2 and τ2. This information is often expressed as the relationship be-
tween the two variances, referred to as an intra-class correlation, ρ, (ICC, Fisher, 1925), 
where: 

στ
τρ

22

2

+
=

         (1) 

The intra-class correlation is thus the proportion of total individual subject-level 
variance that is between randomized groups.  

In addition, because it is often possible to markedly increase the precision of 
group-randomized studies by adjusting for baseline covariates (for example, Bloom, 
Richburg-Hayes and Black, 2007; Murray and Blitstein, 2004), knowledge of the pre-
dictive power of such covariates is essential for designing these studies. The predictive 
power of a covariate represents the proportion of the variance component at each level 
that is predicted (or “explained”) by the covariate. These parameters are often referred 
to as R-squared values.  

The statistical framework for group-randomized studies indicates how the core 
design decisions outlined above, together with the variance and covariance structure of 
the data to be analyzed, determine the statistical precision or power of impact estimates. 
The variance and covariance structure of the data depends on the type of group to be 
randomized (schools, communities, or hospitals, etc.) and the specific outcome measure 
or measures to be used (student achievement, individual behavior, or health status, etc.). 
It is therefore an empirical question as to how much precision a particular design will 
yield when used to address a specific impact question for a given target group. Conse-
quently, a sound empirical foundation is needed to support the future development of 
fields that will use group-randomized studies. This foundation requires information 
about the variance and covariance structure of outcome measures for key target popula-
tions and types of randomized groups. 

Information about the values of intra-class correlations and, to a lesser extent, R-
squared values, has been catalogued by researchers in the health and prevention 
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sciences (for example, Murray and Short, 1995; Murray and Blitstein 2003; Siddiqui, 
Hedeker, Flay, and Hu, 1996). A repository of this information is maintained by David 
Murray and his associates.1 Much less information is available for studies in education 
and child development, and most of this information is limited to outcome measures 
based on standardized achievement test scores (Bloom, Richburg-Hayes, and Black, 
2007; Schochet, 2005; Hedges and Hedberg, 2007). Furthermore, most of the existing 
information is based on two-level data for students clustered in schools. This ignores the 
clustering of students in classrooms. 

This paper attempts to expand the empirical foundation for designing group-
randomized studies in education and child development, using two data sets derived 
from group-randomized studies. Part II describes the two data sources and defines the 
outcome measures examined. Part III presents estimates of intra-class correlations and 
R-squared values for a series of academic and child outcome measures. It also provides 
information for the three-level variance structure of these outcome measures. This 
three-level variance structure represents the clustering of students within classrooms 
and classrooms within schools. Part IV examines the statistical implications of the often 
necessary practice of designing studies that randomize schools as if they represent va-
riances at two levels (students and schools), instead of three levels (students, class-
rooms, and schools). The question addressed here is: By how much has the design of 
these studies been misguided by this simplification? Fortunately, the surprising answer 
to this question is that, in most cases, the designs have probably not been misguided. 
Lastly, Part V examines the amount of uncertainty that exists for estimates of intra-class 
correlations from samples of different sizes and structures and explores the implications 
of this uncertainty for projections of the statistical precision of research designs. 

                                                 
1See http://sph.osu.edu/divisions/epidemiology/epifacstaff/murrayd/group-randomized-trials/ 
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Part II 
Data Sources, Student Samples, and Outcome Measures 

 

Data for this paper were obtained from two studies that randomized schools to 
measure intervention effects on children: (1) the Chicago Literacy Initiative: Making 
Better Early Readers study (CLIMBERs)2 and (2) the School Breakfast Pilot Project 
(SBPP) study.3 This section describes the two studies, their samples, and their outcome 
measures used for the present paper. 

Studies and Samples 
CLIMBERs: This five-year study (2004-2009) is an evaluation of Break-

through to Literacy, an early literacy curriculum, taken to scale in Chicago Public 
Schools preschool classrooms that serve 4-year-old children. Schools were recruited to 
participate in the study if they were low performing and had few other early literacy in-
itiatives. Forty-four schools agreed to participate and were randomly assigned to a 
treatment group that implemented Breakthrough to Literacy or to a control group that 
did not implement the program. The goal of the project was to measure the impact of 
Breakthrough to Literacy at scale on students’ preliteracy skills. 

Participating schools served a largely low-income population; on average, 88 
percent of their students came from low-income families. The schools also primarily 
served students of color; 86 percent reported that more than half their students were ei-
ther African-American or Hispanic. Schools were typically large, with an average 
enrollment of 774 students and a range of 139 to 1,969. Annual mobility rates were 
high, averaging 23 percent and ranging from 7 percent to 56 percent.  

One control school dropped out of the study prior to baseline data collection, 
and one treatment school dropped out prior to follow-up data collection. Because a cen-
tral goal of this paper is to examine three-level data structures for students clustered 
within classrooms clustered within schools, only schools with two or more classrooms 
in the study are included. This limited the present analysis sample to 430 preschool stu-

                                                 
2Abt Associates Inc., along with its research partners at the University of Iowa, is conducting the 

study, which is supported by a grant from the Institute for Education Sciences at the U.S. Department of 
Education.  

3Abt Associates Inc., along with its research partner, Promar International, conducted the study under 
contract to the Office of Analysis, Nutrition, and Evaluation at the U.S. Department of Agriculture, Food 
and Nutrition Service. 
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dents from 47 classrooms in 23 schools. Data for these students were used to estimate 
intra-class correlations for three-level and two-level variance structures and correspond-
ing R-squared values based on student scores from a standardized preliteracy test.  

SBPP:4 This three-year demonstration project (2000-2003) was based on an ex-
perimental design that randomized schools within six school districts (in Alabama, Ari-
zona, California, Idaho, Kansas, and Mississippi) to a treatment condition, in which 
schools implemented a universal free school breakfast program, or to a control condi-
tion, in which schools continued to operate their regular school breakfast programs for 
eligible children from low-income families.5 The goal of the project was to measure the 
added value of universal free school breakfasts.  

The six school districts were chosen for the project from among 136 that ap-
plied. The resulting project sample included students in grades 2 through 6 from 138 
elementary schools. Within each treatment school or control school, six classrooms 
were selected randomly for analysis, with at least one classroom per grade. This paper 
uses data for third-grade students, because the sample for this grade is by far the largest 
and most complete. The findings reported are based on data for 1,151 third-graders 
from 233 classrooms in 111 schools located in 6 school districts.6 The outcomes meas-
ures were obtained from several sources and focused on academic outcomes, other 
school-related outcomes, emotional and behavioral outcomes, as well as health out-
comes. These data were used to estimate intra-class correlations for three-level and two-
level variance structures and corresponding R-squared values from the use of covariates 
(described later).   

Measures 
Outcome measures for this paper comprise four categories: (1) academic out-

comes (standardized test scores); (2) other school-related outcomes (for example, atten-
dance); (3) student behavior; and (4) health outcomes. These measures are briefly de-
scribed below. For further details, see Appendix A.  

Academic Outcomes: Four measures of preliteracy skills were obtained from 
data for CLIMBERs, based on student scores from the Preschool Comprehensive Test 

                                                 
4The discussion in this part is based on Abt Associates Inc. and Promar (2005). 
5The pilot program used a matched-pair random assignment design with schools as the unit of ran-

dom assignment. 
6The number of students, classrooms, and schools vary by outcomes due to item nonresponse. 
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of Phonological and Print Processing (Lonigan, Wagner, Torgesen, and Rashotte, 
2002)7:  

• “Print Awareness” measures beginning knowledge about written language, 
for example, knowing what print looks like and how it works.  

• “Elision” tests a child’s ability to segment spoken words into smaller parts by 
deleting parts and then recalling the remaining portion.   

• “Blending” measures a child’s ability to put sounds together to form words.  
For example, “What word do these sounds make: ‘t-oi’ ”? 

• “Expressive Vocabulary” measures the number of different words a child 
uses when speaking or writing.  

Two measures of third-grade academic performance were obtained from data for 
the SBPP. These measures come from the Stanford Achievement Test Series, Ninth 
Edition (SAT 9): 

• Total scaled score for mathematics 

• Total scaled score for reading  

Other Academic-Related Outcomes: The SBPP also collected supplementary 
measures of student academic performance. Measures used in this paper include: 

• Attendance and tardiness 

• Participation in school breakfasts 

• “Stimulus Discrimination” (Detterman, 1988), which comprises three meas-
ures of cognitive performance  

• The “Digit Span” subtest of the Wechsler Intelligence Scales for Children III 
(Wechsler, 1991), which assesses short-term auditory memory 

• Tasks of “verbal fluency” that count the number of items that students name 
in a given period of time to test their longer-term memory (Simeon and 
Grantham-McGregor, 1989)  

                                                 
7This test measures phonological skills that have been shown to be important precursors to reading 

proficiency. The test has not yet been published, and there is little information about its psychometric 
properties — but it is used widely with middle-income and low-income students.   
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Emotional and Behavioral Outcomes: The SBPP provides a series of psy-
chosocial and behavioral measures for young children. Measures used for this paper are: 

 
• “Social and emotional functioning,” assessed through the Pediatric Symptom 

Checklist (PSC) (Murphy et al., 1998), administered as part of a survey of 
students’ parents 

• “Behavioral measures” from the Conners’ Teacher Rating Scales-Revised 
CTRS-R(s),8 which consists of 28 questions on which teachers rate their stu-
dents. These questions are used to create four scales: Attention Deficit 
Hyperactivity Disorder (ADHD) Index, Cognitive Problems/Inattention, 
Hyperactivity, and Oppositional Behavior. 

• “Behavioral measures” from the Children’s Behavior Questionnaire, which 
measures children’s temperaments (Rothbart, Ahadi, and Evans, 2000). Two 
subscales, Ability to Focus and Ability to Follow Instructions, are used. 

Health Outcomes: In addition, the SBPP collected a series of measures of stu-
dent’s health status. Measures used for this paper include: 

• The Body Mass Index 

• Indicators for weight status, whether a child is considered “overweight” or 
“at risk of overweight”   

• Height 

• Weight

                                                 
8The CTRS-R(s) is a part of a larger set of measures, the Conners’ Rating Scales, which have long 

been used to assess psychopathology and behavior issues, such as problems with conduct, anxiety, and 
social functioning, as well as Attention Deficit Hyperactivity Disorder (ADHD) in children and adoles-
cents (Conners, 2000). 
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Part III 
New Information about 

Intra-Class Correlations and R-Squared Values 

This part of the paper describes how data on intra-class correlations and R-
squared values can be used to design group-randomized studies. It also presents esti-
mates of these parameters from data for the two studies described above and illustrates 
the implications of these estimates for the statistical precision of alternative sample de-
signs. 

Precision of Impact Estimates 
One of the most important features of an impact study is its ability to provide 

adequate precision for estimates of intervention effects. This paper reports precision as 
a minimum detectable effect size (MDES), which, intuitively, is the smallest true inter-
vention effect that a study sample can detect with confidence. Conventionally, a MDES 
is defined as the smallest true program impact that would have an 80 percent chance of 
being detected (80 percent statistical power) with a two-tailed hypothesis test at the 0.05 
level of statistical significance. This paper follows this convention. 

To choose a MDES for a given study requires an understanding of its specific 
circumstances. For example, from a benefit-cost perspective one might ask whether a 
proposed sample could reliably detect the smallest impact required for an intervention 
to “break even” (that is, produce benefits equal to its costs). In other words, one would 
want a sample that was large enough to ensure that an estimated impact near the “break-
even” point would be reliable. A smaller sample could detect only much larger impacts, 
which might be impossible to attain. Hence, this smaller sample would be “underpo-
wered” statistically. Hill, Bloom, Black, and Lipsey (forthcoming) provide a series of 
empirical benchmarks for helping to determine an appropriate MDES for educational 
interventions. There is little such empirical guidance for other fields of intervention re-
search, however. 

A MDES is defined in terms of the underlying population’s standard deviation 
for a given outcome measure. For example, a MDES of 0.20 for student achievement 
indicates that an impact analysis can reliably detect a program-induced increase in stu-
dent achievement that is equal to or greater than 0.20 standard deviation of the existing 
student outcome distribution. Mathematically, a MDES is proportional to the standard 
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error of the impact estimate and to the inverse of the underlying population’s standard 
deviation for the outcome. This relationship can be expressed as: 

 
totalimpactVarMMDES σ/)(*=                (1) 

Where M is a multiplier that depends on the assumed power, significance level, 
and one- or two-tail nature of the statistical test, plus the number of degrees of freedom 
of the study design,9 Var (impact) is the variance of the impact estimate and totalσ  is the 
standard deviation of the outcome measure across all individual subjects in the target 
population (or sample). 

For group-randomized designs, the standard errors of impact estimates are larger 
(often by a lot) than those for individual-randomized designs for the same total number 
of individuals (Bloom, 2005). This is because the clustering of students within class-
rooms and schools causes differences in average outcomes across schools (the school-
level variance component) and/or classrooms (the classroom-level variance component) 
to increase the standard error of impact estimates under group randomization by more 
than under individual randomization. 

Consequently, variance expressions for a group-randomized design must ac-
count for each variance component. For example, the MDES for a study that randomiz-
es schools and has a three-level data structure with students clustered within classrooms 
and classrooms clustered within schools is as follows, assuming no covariates: 

 

222

222
)2( 1*

***
*

)1( σγτ

σγτ

++
++

−
= −

NKJKJJPP

M
MDES J    (2) 

where M(J-2)    = a multiplier defined in Appendix B; 
 P     = the proportion of schools assigned to the treatment group;  
            2τ   = the unconditional variance (without covariates) of mean outcomes across  
           schools; 
           2γ    = the unconditional variance (without covariates) of classroom means within  
           schools; 

2σ  = the unconditional variance (without covariates) of student outcomes with- 
in classrooms; 

                                                 
9For a two-group experimental design without covariates, the number of degrees of freedom equals 

the number of randomized groups minus the two parameters in the model or J-2. The magnitude of M 
decreases as J increases. See Appendix B for a detailed definition of M. 



 

11 

 J     = the total number of schools randomized to treatment or control status; 
            K    = the harmonic mean number of classrooms per school; and 
            N    = the harmonic mean number of students per classroom. 

Equation 2 corresponds to Equation 1 in that:  

• ( 222 σγτ ++ ) equals the total variance of the outcome measure across all stu-
dents from all classrooms in all schools, orσ 2

total
.   

• 
)1(

1*)
***

(
222

PPNKJKJJ −
++

σγτ  represents the influence of the 

school-level, classroom-level, and student-level variance components and the 
proportion of clusters randomized to treatment status. 

In practice, baseline characteristics, such as students’ prior test scores and de-
mographics, are often used as covariates in a multilevel regression model to improve the 
precision of impact estimates. Such models (described later) estimate the intervention 
effect as a regression-adjusted difference of mean outcomes for the treatment and con-
trol groups. To the extent that covariates predict the variation in outcomes across indi-
viduals, classrooms, or schools, they reduce the “unexplained” variance at each of these 
levels. This in turn, reduces the standard error of the impact estimate. Therefore, with 
covariates the MDES is: 

222

222222
)2( 1*

**
)1(

*
)1()1(

*
)1( σγτ

σγτ

++

−
+

−
+

−

−
= −−

NKJ
R

KJ
R

J
R

PP

M
MDES stclscCJ        (3) 

where 2
scR  = the explanatory power of covariates for outcome differences between  

           schools; 
            2

clR  = the explanatory power of covariates for outcome differences between 
           classrooms within schools;  
            2

stR  = the explanatory power of covariates for outcome differences across stu-
dents within classrooms; and 
 C  =  the number of school-level covariates in the model. 

All other parameters are defined as before. 

 Here the R-squared values are calculated as the proportion of each unconditional 
variance that is explained by the covariates; that is, for level L, where L = school, class-
room, or student, 
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2
,

2
,

2
,2

LU

LCLU
LR

σ
σσ −

=        (4) 

where 2
,LUσ  is the unconditional variance at level L without covariates, 

 2
,LCσ  is the conditional variance at level L when covariates are added. 

Note that when there are no covariates, all R-squared values equal zero and Eq-
uation 3 reduces to Equation 2. On the other hand, by including covariates, unexplained 
variance can, in some cases, be reduced and precision can be improved. It is also possi-
ble that, under certain circumstances, the inclusion of covariates at level 1 can increase 
the unexplained variation at level 2 or level 3 and thereby decrease precision. This in-
crease in unexplained variation at level 2 or level 3 would be reflected by a negative 
value for the relevant R-squared.   

Relationships among 2τ , 2γ , and 2σ  can be expressed as intra-class correlations 
like that in Equation 1. The intra-class correlation at the school level ρsc equals the pro-
portion of total student variance ( 222 σγτ ++ ) that is between schools. The intra-class 
correlation at the classroom level, ρcl, equals the proportion of total student variance that 
is between classrooms within schools. In symbols: 

 222

2

σγτ
τρ

++
=sc   

and 

 222

2

σγτ
γρ

++
=cl   

The remaining proportion of total student variance )1( clsc ρρ −−  is the variance 
between students within a class. Therefore, an alternative way to express the MDES for 
a three-level variance structure is: 

 
NKJ

R
KJ
R

J
R

PP

M
MDES stclscclclscscCJ

**
)1)(1(

*
)1()1(

*
)1(

222
)2( −−−

+
−

+
−

−
= −− ρρρρ      (5) 

where all parameters are defined as before. 

Equation 5 provides a simple way to assess the precision of alternative sample 
designs. But to do so requires information about the school-level and classroom-level 
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intra-class correlations and the school-level, classroom-level, and student-level R-
squared values.  

Estimation Model 
This section describes how values for the preceding parameters were estimated 

from data for the Chicago Literacy Initiative: Making Better Early Readers study 
(CLIMBERs) and the School Breakfast Pilot Project (SBPP). Because data from both 
studies identify students within classrooms within schools, variance components and R-
squared values were estimated using the following three-level hierarchical model:10  

Level 1:  

 εππ ijk
s

sijksjkjkijk XY ++= ∑
>0

0
      (6) 

where: 
Y ijk

 = the value of the outcome measure for student i from classroom j in school k; 

π jk0
= the regression-adjusted mean value of the outcome measure for class-

room j in school k;  
 sijkX  = the value of the sth student-level covariate for student i from classroom  
       j in school k; and 

ε ijk
 = the residual error for student i from classroom j in school k, which is   

     assumed to be independently and identically distributed. 

Level 2:  

  γβπ jkkjk +=
00

        (7) 

where:  
β k0

 = the mean value of the outcome measure for school k and 

γ jk
  = the residual error for classroom j from school k, which is assumed to be 

independently and identically distributed. 

                                                 
10All models were estimated by Restricted Maximum Likelihood Estimation, using the PROC 

MIXED procedure in SAS. 
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Level 3:   

 
k

m
mkmkk ZT μθθθβ +∑++=

>
)(

1
100

    (8) 

where: 

θ 0
 = the grand mean of the regression-adjusted outcome measure for the aver-

age control school;  
Tk   = one for treatment schools and zero for control schools; 

θ 1
 = the estimated impact of treatment; 

mkZ  = the mth school-level covariate for school k; and  

 μk  = the residual error for school k, which is assumed to be independently and    
         identically distributed.  

By including an indicator variable for treatment or control status (Tk) this model 
removes all existing differences between the treatment and control groups (treatment 
effects) when estimating variance components. In addition, for the SBPP, the model 
removes all differences among the six participating school districts by including indica-
tor variables for them as school-level covariates (Zmk). Hence, all estimates represent 
within-district variances in the absence of treatment effects. 

The first step in the analysis for an outcome measure was to estimate the preced-
ing model without covariates in order to estimate its unconditional variance components 
(τ2, γ2 and σ2). The second step was to compute the school-level and classroom-level 
unconditional intra-class correlations (ρsc and ρcl) from the estimated unconditional va-
riance components. The third step was to estimate values for each conditional variance 
component using a model that included covariates. The final step was to compute R-
squared values for each level ),,( 222 RRR stclsc

 by comparing the magnitudes of its con-
ditional and unconditional variance components.  

Key Findings 
Table 1 lists parameter estimates for all outcome measures in the analysis. The 

first two columns list school-level and classroom-level unconditional intra-class correla-
tions (estimated without covariates). As noted before, the remaining proportion of the 
total variance comes from variance between students within a class; the last three col-
umns list school-level, classroom-level, and student-level R-squared values (obtained 
by comparing estimates of conditional and unconditional variance components). Find-
ings for academic outcomes are from the CLIMBERs preschool sample and the SBPP 
third-grade sample. Findings for other outcomes are from the SBPP third-grade sample.  
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Table 1 Parameters Estimated from a Three-Level Model

Outcome School Class School Class Student

Academic Outcomes
    Print Awarenessb (CLIMBERs) 0.308 0.016 0.580 0.000 0.000
    Blendingb(CLIMBERs) 0.149 0.011 0.346 0.000 0.000
    Elisionb (CLIMBERs) 0.000 0.068 n.e. 0.000 0.000
    Expressive Vocabularyb(CLIMBERs) 0.055 0.091 1.000 0.000 0.000
    Stanford 9 total math scaled scorea,c                                   0.081 0.026 0.494 0.627 0.482
    Stanford 9 total reading scaled scorea,c                                0.059 0.086 0.840 0.880 0.510
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)a,c     0.206 0.000 0.385 n.e. 0.320
    Attendancea,c                                            0.000 0.060 n.e. 0.525 0.311
    Days tardy as a percentage of number of school days enrolledc 0.077 0.000 0.253 n.e. 0.217
    Stimulus Discrimination: number of trials incorrectc  0.000 0.051 n.e. -0.001 -0.002
    Stimulus Discrimination: average trial timec 0.049 0.044 0.267 0.163 0.020
    Stimulus Discrimination: average viewing timec 0.045 0.044 0.271 0.176 0.017
    Digit Span: forward and backward combined and scaled by agec 0.022 0.000 0.258 n.e. 0.049
    Verbal Fluency: number of animals namedc 0.053 0.046 0.670 0.029 0.025
    Verbal Fluency: number of things to eat namedc 0.040 0.044 0.791 -0.132 0.025
    Verbal Fluency: VF_ani and VF_eat combinedc 0.054 0.046 0.771 -0.068 0.033
Emotional and Behavioral Outcomes
    Pediatric Symptom Checklist (PSC) status, 0=non-PSC case 1=PSC casec 0.000 0.000 -3.128 n.e. 0.021
    Sum of 17 PSC questionsc 0.021 0.021 -0.231 0.207 0.042
    Conners’ ADHD Indexc 0.008 0.078 0.699 -0.054 0.038
    Cognitive Problems/Inattentionc 0.005 0.033 1.000 0.279 0.083
    Hyperactivityc 0.000 0.074 n.e. 0.026 0.019
    Oppositional Behaviorc 0.000 0.037 n.e. 0.139 0.037
    Ability to Focusc 0.001 0.125 1.000 -0.008 0.104
    Ability to Follow Instructionsc 0.000 0.130 n.e. 0.017 0.120
Health Outcomes
    Body Mass Index percentilec 0.000 0.000 n.e. n.e. 0.004
    At risk of overweightc 0.006 0.000 0.363 n.e. 0.002
    Considered overweightc 0.000 0.035 n.e. -0.029 0.002
    Weight statusc 0.003 0.007 0.231 0.014 0.003
    Heightc 0.017 0.008 1.000 -0.162 0.048
    Weightc 0.017 0.018 0.574 -0.470 0.016
Sources: Where indicated, data are from  the CLIMBERs database; all other data are from the School Breakfast Pilot Project (SBPP) 
               year 1 follow-up database.
Notes: Estimated values for the intra-class correlations were obtained from a three-level model of the outcome measure without 
             covariates. Estimated values for R-squared were obtained from a three-level model of the outcome measure with and without 
             student-level and school-level covariates where available.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator variables 
             for each school district in the study sample.
             aBaseline measure of the outcome variable is included as prior achievement measure in the model.
             bBaseline measure of other academic outcomes is included as prior achievement measure in the model.
             cStudent-level demographic information (age, ethnicity, gender, eligibility for free/reduced lunch) is included in the model.
             n.e.=not estimable.
             n.a.=not available.

Unconditional ICC R-squared 
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Unconditional Intra-Class Correlations 
For academic outcomes, the majority of school-level unconditional intra-class 

correlations range from about 0.06 to 0.15, and all classroom-level unconditional intra-
class correlations are less than 0.10. The mean value of the unconditional intra-class 
correlation is 0.11 for schools and 0.05 for classrooms. 

For three academic outcomes (Print Awareness, Blending, and the SAT 9 math 
test), the school-level intra-class correlation exceeds the classroom-level intra-class cor-
relation. This may reflect the fact that schools in the sample serve different student pop-
ulations. For three of the academic outcomes (Elision, Expressive Vocabulary, and the 
SAT 9 reading test), the classroom intra-class correlation is larger than the school intra-
class correlation. This might reflect that fact that certain skills are influenced more by 
teacher characteristics than by school conditions. 

Mean values for school-level and classroom-level unconditional intra-class cor-
relations are 0.05 and 0.03, respectively, for academic-related outcomes, such as school 
breakfast program participation, school attendance, Stimulus Discrimination, Digit Span 
and Verbal Fluency. Of the 10 outcome measures in this category, three have estimated 
intra-class correlations that equal zero for classrooms, and two have estimated intra-
class correlation that equal zero for schools. Values for the remaining measures at both 
the classroom level and school level are typically less than 0.05. 

For emotional and behavioral outcome measures, the mean value of the uncondi-
tional intra-class correlation is less than 0.01 for schools and approximately 0.06 for 
classrooms. For all of these outcome measures, the classroom intra-class correlation is 
larger than that for schools. This is perhaps because the measures were constructed from 
teacher ratings.11 

For health measures, the mean intra-class correlation is less than 0.01 for 
schools and approximately 0.01 for classrooms. These small magnitudes may reflect the 
fact that young students have had limited exposure to school environmental and contex-
tual factors that could shape their physical development.  

At this point it is useful to ask: How do the present findings compare with those 
from previous research? As noted, there are only a few studies that provide such infor-
mation. Hedberg, Santana, and Hedges (2004) report unconditional school-level intra-
class correlations for academic outcomes based on data for several large national sam-
ples. These values typically range from about 0.15 to 0.30 and reflect differences in 

                                                 
11However, the Pediatric Symptom Checklist questions were answered by parents. 
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outcomes that exist across both within and across school districts. Based on evidence 
from past empirical studies and new evidence from three evaluation studies, Schochet 
(2005) concludes that: “the examined data sources suggest that values for ρ1 (which we 
refer to as the unconditional school-level intra-class correlation within a district) often 
range from 0.10 to 0.20 for standardized test scores.” Bloom, Richburg-Hayes, and 
Black (2007) report school-level intra-class correlations that range from about 0.15 to 
0.20 for reading and math test scores, using third-grade data from five urban school dis-
tricts.  

There is also a large and growing body of empirical research on the magnitudes 
of intra-class correlations for public health outcomes and the incidence of risk behaviors 
— such as smoking, drinking, drug abuse, and sexual activity — in communities, firms, 
hospitals, group medical practices, and schools (for example, Murray and Blitstein, 
2003; Ukoumunne et al.; 1999; Siddiqui, Hedeker, Flay, and Hu, 1996; Murray and 
Short, 1995). The intra-class correlations for these clusters and outcomes are much 
smaller than those for measures of student achievement in schools and range from about 
0.01 to 0.05.  

The overall pattern of findings across categories of outcomes in Table 1 is thus 
consistent with these findings from prior research. However, values in the table for 
school-level intra-class correlations for academic outcomes are generally smaller than 
those observed by others. This may reflect two factors. First, findings in Table 1 are 
from three-level analyses, and those from most past research are from two-level analys-
es. As demonstrated in Part IV, estimates of school-level intra-class correlations from a 
three-level analysis are systematically smaller than those from a two-level analysis of 
the same date. Second, the samples of schools for CLIMBERs and the SBPP may be 
more homogenous than those for entire school districts that have been used for most 
related prior research (for example, Hedges and Hedberg, 2007; Bloom, Richburg-
Hayes, and Black, 2007). 

Explanatory Power of Covariates 
CLIMBERs collected baseline data on reading pretests to use as a covariate. 

These data were obtained for individual students, but because there was so much stu-
dent mobility (and thus attrition) during the school year between the pretest and post-
test, this information was aggregated to the school level for use as a covariate. This was 
accomplished by computing the mean value of individual student pretest scores for each 
school. CLIMBERs also collected school-level demographic information, such as aver-
age student age, gender, ethnicity, and eligibility for free or reduced-price lunch, to use 
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as covariates. The SBPP study collected baseline student-level pretest information, plus 
student-level demographic information. 

The last three columns of Table 1 present the estimated R-squared value or pro-
portion of variance “explained” by covariates for each outcome measure. In each case 
the best possible combination of covariates (those with the most explanatory power) 
was used. For CLIMBERs, only school-level covariates were used, whereas for the 
SBPP, student-level covariates were used. No classroom-level covariates were used. 

Consider first the findings for academic outcomes. All classroom-level and stu-
dent-level R-squared values equal zero for outcome measures from CLIMBERs, be-
cause only school-level covariates could be used for these outcomes. School-level cova-
riates do not vary across classrooms within schools or across students within class-
rooms, so they cannot co-vary with classroom-level or student-level outcomes. Conse-
quently, they have zero explanatory power for classroom or student variation. On the 
other hand, R-squared values from the SBPP (which used student-level pretests and 
demographic information as covariates) for SAT 9 math and reading scores are substan-
tial at both the classroom level (0.627 and 0.880) and the student level (0.482 and 
0.510). For academic outcome measures from both studies, R-squared values for 
school-level variation ranged from 0.346 to 1. The one exception was Elision, for which 
an R-squared value could not be estimated because its unconditional school-level va-
riance was zero. 

For other outcomes in the table, we were able to calculate R-squared values only 
for student-level demographic covariates. Adding students’ age, gender, ethnicity, and 
free or reduced-price lunch status reduced the student-level variance by very little, how-
ever. These covariates also reduced the classroom-level variance by very little. On the 
other hand, they reduced school-level variances appreciably for several outcome meas-
ures. This is an important finding for the design of group-randomized studies, because 
the school-level variance component is usually the primary factor that determines the 
required sample size.   

A number of the R-squared values reported in Table 1 are negative. This could 
be due to estimation error, which can occur when the estimated unconditional variance 
is close to zero. In this case, a small amount of estimation error can produce an esti-
mated conditional variance component that is larger than its unconditional counterpart, 
thus producing a negative value for R-squared. It is also possible that, after controlling 
for level 1 covariates, the level 2 variance actually increased, which would lead to a 
negative value of the R-squared. 
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Lastly, note that several R-squared values in the table are equal to one, which 
implies that the covariate or covariates involved explain all of a variance component. 
This occurs only for school-level variance components that are very close to zero with-
out covariates. Hence, there is not much variance at this level for covariates to explain. 

In addition to estimating R-squared values for the best possible model for each 
outcome measure, we also investigated the explanatory power of different combinations 
of covariates. Table 2 presents results of analyses for pretests alone, demographic cha-
racteristics alone, and pretests plus demographic characteristics together. Findings are 
reported for the subset of outcomes that have both a preprogram measure (pretest) and 
demographic information. 

For the first four outcomes in the table, only school-level covariates are availa-
ble, and thus only R-squared values for the school-level variance component are nonze-
ro. For these outcomes, it is clear that the explanatory power of school-level demo-
graphic variables is much less than that of school-level pretest measures. Furthermore, 
the added value of combining these two types of covariates is limited. 

The remainder of the table presents results for outcome measures that have stu-
dent-level covariates. For reading and math test scores, demographic covariates provide 
slightly more explanatory power than pretests at the school and classroom levels, but 
the reverse is true at the student level. Adding demographic covariates to pretests does 
not consistently improve explanatory power at any of the three levels. There is a similar 
pattern of findings for program participation, attendance, and tardiness, although their 
R-squared values are smaller than those for academic outcomes. 

Using Parameter Estimates to Compute Minimum Detectable 
Effect Sizes  

The payoff from collecting data about intra-class correlations and R-squared 
values is the ability to use this information to estimate MDES for alternative sample de-
signs. Table 3 illustrates the results of doing so based on the intra-class correlations and 
R-squared values reported in Table 1.  

The first column of Table 3 reports the MDES of the original sample used for 
the present analysis (Appendix C reports the sample size and structure for each outcome 
measure). Recall that for the CLIMBERs data there were 430 students from 47 class-
rooms in 23 schools in one school district. This represents about 9 students per class-
room and 2 classrooms per school. Given this sample and the estimated intra-class cor-



 

 

 

Table 2  Estimated R-Squared Values from Models with Different Sets of Covariates

Outcome School Class Student School Class Student School Class Student

Academic Outcomes
    Print Awareness (CLIMBERs) 0.580 0.000 0.000 0.200 0.000 0.000 0.889 0.000 0.000
    Blending (CLIMBERs) 0.346 0.000 0.000 -0.053 0.000 0.000 -0.010 0.000 0.000
    Elision  (CLIMBERs) n.e. 0.000 0.000 n.e. 0.000 0.000 n.e 0.000 0.000
    Expressive Vocabulary (CLIMBERs) 1.000 0.000 0.000 0.394 0.000 0.000 1.000 0.000 0.000
    Stanford 9 total math scaled score                                   0.454 0.421 0.474 0.585 0.418 0.069 0.494 0.627 0.482
    Stanford 9 total reading scaled score                                0.808 0.820 0.503 0.875 0.196 0.066 0.840 0.880 0.510
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)     0.358 n.e. 0.289 0.217 n.e. 0.120 0.385 n.e. 0.320
    Attendance                                            n.e. 0.499 0.311 n.e. 0.149 0.024 n.e. 0.525 0.311
    Days tardy as a percentage of no.of school days enrolled 0.214 n.e. 0.195 0.113 n.e. 0.017 0.253 n.e. 0.217

Sources: Where indicated, data are from  CLIMBERs database; all other data are from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for R-squared were obtained from a three-level model of the outcome measure with and without 
             student-level and school-level covariates where available.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator variables 
             for school districts in the study sample.
             aDemographic information includes age, ethnicity, gender, and eligibility for free/reduced lunch.
             n.e.=not estimable.
             n.a.=not available.

Pretest + DemographicsDemographicsa Pretest

20 



 

 

Table 3  Calculated Minimum Detectable Effect Size (MDES) from Three-Level Models

Original Sample Structure
(varies by outcome)

Number of Students Per Class 5 5 5 5 25 25 25 25
Number of Classes Per School 2 2 4 4 2 2 4 4
Number of Schools 20 100 20 100 20 100 20 100

Outcome

Academic Outcomes
    Print Awarenessb (CLIMBERs) 0.516 0.567 0.254 0.512 0.229 0.486 0.218 0.469 0.210
    Blendingb(CLIMBERs) 0.476 0.541 0.242 0.472 0.211 0.433 0.194 0.412 0.184
    Elisionb (CLIMBERs) 0.357 0.446 0.200 0.316 0.141 0.287 0.128 0.203 0.091
    Expressive Vocabularyb(CLIMBERs) 0.372 0.453 0.202 0.320 0.143 0.313 0.140 0.221 0.099
    Stanford 9 total math scaled scorea,c                                   0.184 0.380 0.170 0.323 0.144 0.294 0.131 0.274 0.123
    Stanford 9 total reading scaled scorea,c                                0.148 0.298 0.133 0.227 0.102 0.190 0.085 0.159 0.071
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)c     0.243 0.532 0.238 0.491 0.219 0.464 0.208 0.455 0.203
    Attendancec                                            0.170 0.385 0.172 0.272 0.122 0.259 0.116 0.183 0.082
Emotional and Behavioral Outcomes
    Conners’ ADHD Indexc 0.198 0.454 0.203 0.324 0.145 0.309 0.138 0.222 0.099
    Cognitive Problems/Inattentionc 0.172 0.396 0.177 0.280 0.125 0.215 0.096 0.152 0.068
Health Outcomes
    Body Mass Index percentilec 0.166 0.395 0.177 0.279 0.125 0.177 0.079 0.125 0.056
    At risk of overweightc 0.170 0.402 0.180 0.290 0.130 0.194 0.087 0.148 0.066
Sources: Where indicated, calculations are based on data from  the CLIMBERs database; all other calculations are based on data from the School Breakfast Pilot 
                Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the intra-class correlations were obtained from a three-level model of the outcome measure without 
             covariates. Estimated values for R-squared were obtained from a three-level model of the outcome measure with and without 
             student-level and school-level covariates where available.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator variables 
             for each school district in the study sample.
             aBaseline measure of the outcome variable is included as prior achievement measure in the model.
             bBaseline measure of other academic outcomes is included as prior achievement measure in the model.
             cStudent-level demographic information (age, ethnicity, gender, eligibility for free/reduced lunch) is included in the model.

Hypothetical Sample Structure
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relations and R-squared values reported in Table 1, MDES range from about 0.37 to 
0.52 standard deviations for the four CLIMBERs outcome measures.   

For the SBPP data set, the sample varies from outcome to outcome because of 
missing data. In general, this dataset represents about 1,100 students from 230 classes in 
110 schools (or about 5 students per classroom and 2 classrooms per school). The esti-
mated MDES for its outcome measures range mainly from about 0.15 to 0.20 standard 
deviation.   

The remaining columns in the table vary the sample size and structure while 
holding constant the estimated values of intra-class correlations and R-squared values 
(The findings in the table assume that half the schools are randomized to treatment sta-
tus, and half are randomized to control status). This illustrates how to assess the impli-
cations for precision of alternative sample sizes and structures.  

Columns two and three in the table illustrate for each outcome measure how a 
fivefold increase in the number of randomized schools from 20 to 100 reduces the min-
imum detectable size, given five students per classroom and two classrooms per school. 
For Print Awareness, doing so reduces the MDES from 0.567 standard deviations to 
0.254 standard deviations. 

By comparing the findings in columns two and five, one can examine the effect 
of a fivefold increase in the number of students per school produced by a fivefold in-
crease in the number of students per classroom. For Print Awareness, this implies a re-
duction in the MDES from 0.567 standard deviations to 0.486 standard deviations.  

Comparing the two preceding sets of results illustrates the well-known fact that 
a proportional increase in the number of schools (or more generally randomized groups) 
improves precision by far more than the same proportional increase in the number of 
students per school (For example, see Bloom, Richburg-Hayes, and Black, 2007).  

Lastly, note how changing the number of classrooms and students per school in-
fluences precision, given a fixed total number of schools. This can be seen by compar-
ing findings in columns two and four of the table. For example, given 20 randomized 
schools and doubling the number of classrooms per school 2 to 4 (and thereby doubling 
the number of students per school from 10 to 20) reduces the MDES for Print Aware-
ness from 0.567 standard deviations to 0.512 standard deviations. 

By making comparisons such as those just described, one can begin to assess the 
relative precision of alternative sample designs for specific outcome measures. And in 
this way a proposed research design can be developed and defended. 
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Part IV 
Assessing Two-Level Designs for Three-Level Situations 

The Methodological Problem 
This section addresses the question: What are the implications of planning and 

analyzing a study that randomizes groups comprised of three levels of variation, without 
explicitly accounting for the middle level? For example, what if one randomized 
schools but planned the study and analyzed the resulting data without explicitly ac-
counting for the clustering of students within classrooms?  

This problem often occurs at the planning stage of studies that randomize 
schools, because little is known about the three-level variance structure of outcome 
measures for students clustered in classrooms in schools. As noted earlier, most of the 
empirical basis for planning such studies comprises information for the two-level va-
riance structure of students clustered in schools. Thus research designs based on this 
information do not account explicitly for the clustering of students in classrooms. 

The problem also occurs at the analysis stage of studies that randomize schools, 
because researchers often use administrative records to measure student outcomes. Be-
cause these records often do not identify which students are in which classrooms — and 
adding such identifiers is difficult or costly, if not impossible to do — these studies are 
analyzed using two-level models that do not account explicitly for the clustering of stu-
dents within classrooms. We demonstrate below that, even though this middle level of 
clustering is not accounted for explicitly in the design or analysis of many studies, it is 
actually accounted for implicitly.  

The Statistical Issue 
To help understand what is at stake, consider two alternative research designs 

for estimating the impacts of an educational intervention on student outcomes from a 
study that randomizes elementary schools in a large urban school district. Impacts are 
estimated by the observed differences in mean outcomes for the randomized treatment 
group and control group. Without loss of generality, we assume that the outcome varia-
ble has a standard deviation of 1.0. In this case, impact estimates represent standardized 
effect sizes. Also assume that the true variance structure comprises three levels, with 
students clustered in classrooms that are clustered in schools. 
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Design A uses a three-level variance model, which explicitly recognizes all three 
levels of the variance structure. The true school-level variance equals τA

2, which is the 
variance of mean outcomes across schools. The true classroom-level variance equals 
γA

2, which is the variance of classroom means within schools. The true student-level 
variance equals σA

2, which is the variance of student scores within classrooms. The total 
student variance equals the sum of these three variance components. 

Design B uses a two-level variance model, which recognizes only a variance for 
mean values of the outcome measure across schools, τB

2 and a variance for individual 
student outcomes within schools, σB

2. These two variances sum to the total student va-
riance, which is the same as that for the three-level model but is decomposed different-
ly. By ignoring the clustering of students within classrooms, student outcomes are as-
sumed to vary independently of each other within schools, which is an oversimplifica-
tion.  

The following expressions can be used to compute a minimum detectable effect 
size (MDES) for mean student outcomes, given designs A and B, without covariates or 
blocking:12 

Design A 
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 Where: 
 
  MDESA = the minimum detectable effect size for design A; 
  MJ-2 = a multiplier for J-2 degrees of freedom that equals approximately 
   2.8 for studies that randomize 20 or more schools;  
  P = the proportion of schools randomized to treatment; 
  J = the total number of schools randomized to treatment or control status; 
  NA= the harmonic mean number of students per classroom; and  
  K = the harmonic mean number of classrooms per school. 

                                                 
12As done throughout this paper, MDES are defined for a two-tail hypothesis test at the 0.05 level of 

statistical significance with 80 percent statistical power.  
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Design B 
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 Where, in addition: 
 
  NB = the harmonic mean number of students per school. 

These two expressions are the same with respect to the multiplier (MJ-2), which 
converts standard errors of estimates to minimum detectable effects. The two expres-
sions are also the same with respect to the proportional allocation of randomized groups 
to treatment status (P) and control status (1-P). Their difference lies within the standard 
error of the impact estimator, which is represented by the square root of the sum of con-
tributions of the variances from the different levels of the statistical model. 

The central question to address when comparing these two expressions is: How 
do their estimated values compare if all three variances are estimated and used for Eq-
uation 9, but only the top- and bottom-level variances are estimated and used for Equa-
tion 10?   

To help develop some intuition about this question, first recall that both models 
start with the same total variance in the outcome measure across all students from all 
classrooms in all schools. Hence, the sum of the three variances under model A equals 
the sum of the two estimated variances under model B or: 

   στσγτ 22222
BBAAA +=++        (11) 

Variance estimates for model B must thus “shift” some of the middle-level va-
riance to the bottom level, the top level, or both levels. Appendix D proves that the fol-
lowing expressions represent this shifting: 
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Where: 
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τ BE  the expected value of τ 2
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Equations 12 and 13 indicate that part of the true classroom-level variance is 
shifted to the estimated school-level variance, while the remainder is shifted to the esti-
mated student-level variance.  

Intuitively, it is easy to see how part of the classroom-level variance “shifts 
down” to the estimated student-level variance. This occurs because part of the observed 
variance in outcomes across students within a school reflects classroom differences. 
Thus, when measuring the variation across students within schools and ignoring cross-
classroom differences, part of these differences are included in the measure of student-
level variance, σ 2

^

B
. Consequently, the estimated student-level variance for the two-

level modelσ 2
^

B
 exceeds that for the three-level model, σ 2

^

A
. 

It is less readily apparent how the two-level estimation model B attributes some 
of the cross-classroom variance to the estimated variance across schools. This occurs 
because model B assumes that outcomes vary independently across students within 
schools, when in fact they are clustered by classroom. By ignoring the clustering of stu-
dents within classrooms, the two-level model B understates the contribution of student-
level variation to the total observed variance of school means. Thus, when decomposing 
the total observed variance in school means into the portion due to true variation across 
schools (the school-level variance) and the portion due to estimation error produced by 
within-school student variation, the two-level model overestimates the school-level va-
riance. Consequently, the estimated school-level variance for the two-level model ex-
ceeds that for the three-level model.13 

 

                                                 
13Equation 12 indicates that less of the classroom-level variance is shifted to the estimated school-

level variance as students per school (NAK) are clustered into fewer classrooms (K). This reflects how 
the clustering of students within classrooms inflates the true variability of within-school outcomes. Ignor-
ing this clustering thus causes one to understate the within-school variability of outcomes by more when 
there are fewer classroom clusters, which, in turn, causes one to overstate the between-school variance 
accordingly. 
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Because the classroom variance that is ignored by a two-level model is reflected 
in estimates of school and student variances, the classroom variance is not missing from 
a two-level analysis. As proved in Appendix D, using a two-level model to estimate the 
minimum detectable effect of a group-randomized research design will produce the 
same results as a three-level model, as long as the study used for planning purposes has 
the same sample allocation (the same number of students per classroom and the same 
number of classrooms per school) within schools as the study being designed.   

The proofs of the preceding findings are based on a balanced sample for schools 
with the same number of classrooms and students per classroom. In addition, these 
proofs are for the expected values of the estimators being considered, not for specific 
estimates from a given sample. Furthermore these proofs do not consider situations in 
which covariates are used in the impact estimation model. The following section thus 
explores empirically how the findings apply to specific estimates from unbalanced sam-
ples, with varying numbers of classrooms per school and students per classroom, both 
with and without the use of covariates.  

Empirical Findings 
The first step in the empirical analysis was to estimate variances for each of the 

three levels in model A and for each of the two levels in model B from Chicago Litera-
cy Initiative: Making Better Early Readers study (CLIMBERs) data and School Break-
fast Pilot Project (SBPP) data. 

Table 4 presents these variance estimates for 12 selected outcome measures. 
Corresponding findings for all other outcome measures are presented in Appendix C. 
Note that the variance estimates in Table 4 are not standardized and thus are reported in 
the original units of each outcome measure (squared). Because these variances are esti-
mated without covariates, they are unconditional.  

The first four columns in the table report nonstandardized unconditional va-
riance estimates from the three-level model, plus the total variance across all students in 
each sample. The last three columns report nonstandardized unconditional variance es-
timates from the two-level model for students within schools, plus their total variance. 

For example, the estimated three-level variances for Print Awareness (in the first 
row of the table) equal 32.2 at the school level, 1.7 at the classroom level, and 70.6 at 
the student level. Their sum equals 104.4, which is the total nonstandardized uncondi-
tional variance across all students from all classrooms in all schools in the CLIMBERs 



 

 

Table 4 Three-Level vs. Two-Level Model Comparisons: Nonstandardized Unconditional Variance Components

Outcome School Class Student Total School Student Total

Academic Outcomes
    Print Awareness  (CLIMBERs) 32.2 1.7 70.6 104.4 33.2 71.4 104.6
    Blending (CLIMBERs) 3.0 0.2 17.0 20.2 3.1 17.1 20.2
    Elision  (CLIMBERs) 0.0 1.1 14.8 15.9 0.5 15.4 15.9
    Expressive Vocabulary (CLIMBERs) 19.8 32.5 306.2 358.5 38.2 321.1 359.3
    Stanford 9 total math scaled score                                   115.1 36.4 1,273.2 1,424.7 131.4 1,293.2 1,424.6
    Stanford 9 total reading scaled score                                108.8 159.0 1,581.9 1,849.6 181.8 1,666.5 1,848.3
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)     193.4 0.0 745.9 939.2 193.5 745.8 939.3
    Attendance                                            0.0 0.8 13.0 13.9 0.3 13.5 13.9
Emotional and Behavioral Outcomes
    Conners’ ADHD Index 0.9 9.1 107.3 117.3 4.8 112.5 117.3
    Cognitive Problems/Inattention 0.6 4.4 128.8 133.9 2.8 131.2 133.9
Health Outcomes
    Body Mass Index percentile 0.0 0.0 784.4 784.4 0.0 784.4 784.4
    At risk of overweight 0.0 0.0 0.2 0.2 0.0 0.2 0.2
Sources: Where indicated, data are from  CLIMBERs database; all other data are from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model of the outcome measure without 
             covariates.  All analyses include an indicator variable distinguishing treatment and control groups; all analyses for
             outcomes from the SBPP database also include indicator variables for school districts in the study sample.

Nonstandardized  Unconditional Variance Components
Three-Level Model Two-Level Model
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sample for that outcome measure.14 The corresponding two-level variances are 33.2 at 
the school level and 71.4 at the student level, which total 104.6.  

The first thing to note about these findings is that the three-level variance esti-
mates and the two-level variance estimates sum to almost exactly the same total. Their 
only difference is due to estimation error. This finding holds for every measure in Table 
4 and for every other measure in Appendix C. It reflects the fact that the three-level es-
timation model and the two-level estimation model start with the same total variance 
across all students. 

The second thing to note about the findings is that the classroom-level variance 
in the three-level model is shifted both to the school-level variance and to the student-
level variance in the two-level model. Hence, both of these estimated variances are 
larger for the two-level model than for the three-level model. This difference is not pro-
nounced for the first outcome in the table, Print Awareness, because its classroom-level 
variance is small relative to those for the other two levels. The difference is more pro-
nounced, however, for expressive vocabulary, because its classroom-level variance is 
appreciably larger relative to its other two variances. Its estimated school-level variance 
is 19.8 for the three-level model, versus 38.2 for the two-level model. And its estimated 
student-level variance is 306.2 for the three-level model, versus 321.1 for the two-level 
model. 

Table 5 reports standardized estimates of the variances reported in Table 4, such 
that the three-level variance estimates for each outcome measure sum to a value of one, 
and the two-level variance estimates sum to a value of one. Consequently, the pattern of 
findings described above for Table 4 is also visible in Table 5. In addition, the results in 
Table 5 for school variances and classroom variances in the three-level model and for 
schools in the two-level model represent intra-class correlations.  

Consider the findings for Print Awareness. In Table 5, the standardized variance 
for schools in the three-level analysis equals 0.308. In other words, the school-level in-
tra-class correlation equals 0.308. This means that about 31 percent of the total variation 
across all students from all schools in the analysis sample is estimated to be due to dif-
ferences in mean outcomes across schools. The standardized variance for classrooms in 
the three-level analysis equals 0.016. In other words, the classroom-level intra-class cor-
relation equals 0.016. This means that approximately 2 percent of the total variation 
across all students from all schools in the analysis sample is estimated to be due to dif-
ferences in mean outcomes for classrooms within schools. The remaining part of the 

                                                 
14As was shown in Part II, these variances were estimated using a statistical model that removes all 

existing differences between treatment and control groups. In addition, for the SBPP, the model removes 
all differences among the six participating school districts. Hence, all estimates represent within-district 
variances in the absence of treatment.  



 

 
 

Table 5 Three-Level vs. Two-Level Model Comparisons: Standardized Unconditional Variance Components

Outcome School Class Student School Student

Academic Outcomes
    Print Awareness  (CLIMBERs) 0.308 0.016 0.676 0.318 0.682
    Blending (CLIMBERs) 0.149 0.011 0.840 0.155 0.845
    Elision  (CLIMBERs) 0.000 0.068 0.932 0.032 0.968
    Expressive Vocabulary (CLIMBERs) 0.055 0.091 0.854 0.106 0.894
    Stanford 9 total math scaled score                                   0.081 0.026 0.894 0.092 0.908
    Stanford 9 total reading scaled score                                0.059 0.086 0.855 0.098 0.902
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)     0.206 0.000 0.794 0.206 0.794
    Attendance                                            0.000 0.060 0.940 0.023 0.977
Emotional and Behavioral Outcomes
    Conners’ ADHD Index 0.008 0.078 0.915 0.041 0.959
    Cognitive Problems/Inattention 0.005 0.033 0.962 0.021 0.979
Health Outcomes
    Body Mass Index percentile 0.000 0.000 1.000 0.000 1.000
    At risk of overweight 0.006 0.000 0.994 0.006 0.994
Sources: Where indicated, data are from  CLIMBERs database; all other data are from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model of the outcome measure without 
             covariates.  All analyses include an indicator variable distinguishing treatment and control groups; all analyses for
             outcomes from the SBPP database also include indicator variables for school districts in the study sample.
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total variation is due to differences in outcomes for students within classrooms within 
schools.  

The preceding findings demonstrate that none of the total variation in a three-
level variance structure is “lost” when the middle level is not accounted for explicitly. 
The findings also demonstrate that not accounting for the middle level explicitly causes 
the estimated variances for both the top level and bottom level to increase.    

Table 6 uses the standardized variance estimates from Table 5, plus the number 
of students, classrooms, and schools in the analysis sample for each outcome measure, 
to compute the MDES for that measure, given its original sample. Equation 9 was used 
to compute MDES for three-level analyses, and Equation 10 was used for two-level 
analyses.  

To see how this was done, consider yet again the findings for Print Awareness. 
Given 23 schools with 47 classrooms and 430 students in the sample, plus the three-
level standardized unconditional variance estimates of 0.308, 0.016 and 0.676 for 
schools, classrooms, and students, respectively (from Table 5), an unconditional MDES 
of 0.735 was computed using Equation 9. Similarly, given 23 schools with 430 students 
and the two-level standardized unconditional variance estimates of 0.318 and 0.682 for 
schools and students, respectively (from Table 5), an unconditional minimum detectable 
size of 0.737 was computed using Equation 10.15 

These findings indicate that, whether the study had been planned using a two-
level analysis or a three-level analysis, as long as the within-school allocation of class-
rooms and students is the same, the same statistical precision would have been predicted 
for Print Awareness, given the original sample. The same conclusion holds for all other 
outcome measures that were examined.   

When assessing these findings, it is useful to examine the range of different rela-
tionships that exist among variances at different levels. For example, Print Awareness 
has a small proportion of its total variance at the classroom level (0.016) and a large 
proportion at the school level (0.308). Expressive Vocabulary has more of its total va-
riance at the classroom level (0.091) and less at the school level 0.055). The Conners’ 
ADHD Index has 0.078 of its total variance at the classroom level and 0.008 at the 
school level. Hence, the different outcome measures in the present analysis represent 
considerable diversity of variance structure. This suggests that the consistent relation-
ship observed between three-level analyses and two-level analyses is not limited to a 
single idiosyncratic variance structure.   

                                                 
15These findings assume that half the schools are randomized to treatment, and half are randomized 

to control status. 



 

 

Table 6 Three-Level vs. Two-Level Model Comparisons: Minimum Detectable Effect Size 

Outcome Unconditional Conditional Unconditional Conditional

Academic Outcomes
    Print Awarenessb (CLIMBERs) 0.735 0.521 0.737 0.526
    Blendingb(CLIMBERs) 0.559 0.484 0.560 0.486
    Elisionb (CLIMBERs) 0.373 0.373 0.374 0.302
    Expressive Vocabularyb(CLIMBERs) 0.482 0.386 0.495 0.311
    Stanford 9 total math scaled scorea,c                                   0.259 0.184 0.259 0.184
    Stanford 9 total reading scaled scorea,c                                0.261 0.148 0.264 0.150
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)c     0.305 0.243 0.305 0.243
    Attendancec                                            0.211 0.170 0.210 0.163
Emotional and Behavioral Outcomes
    Conners’ ADHD Indexc 0.203 0.198 0.202 0.202
    Cognitive Problems/Inattentionc 0.186 0.172 0.187 0.164
Health Outcomes
    Body Mass Index percentilec 0.167 0.166 0.167 0.166
    At risk of overweightc 0.172 0.170 0.172 0.170
Sources: Where indicated, calculations are based on data from  the CLIMBERs database; all other calculations are based on data from  
                the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the intra-class correlations were obtained from a three-level model of the outcome measure without 
             covariates. Estimated values for R-squared were obtained from a three-level model of the outcome measure with and without 
             student-level and school-level covariates where available.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator variables 
             for each school district in the study sample.
             aBaseline measure of the outcome variable is included as prior achievement measure in the model.
             bBaseline measure of other academic outcomes is included as prior achievement measure in the model.
             cStudent-level demographic information (age, ethnicity, gender, eligibility for free/reduced lunch) is included in the model.

Minimum Detectable Effect Size 
Three-Level Model Two-Level Model
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The findings in Table 6 labeled conditional MDES take comparisons of two- 
and three-level analyses a step further by accounting for covariates. This is accom-
plished by including covariates in the models used to estimate multilevel variances and 
subsequently estimating the value of R-squared for each variance. Based on these esti-
mated R-squared values and the original unconditional variances, it is possible to esti-
mate the MDES for the original sample given available covariates.  

The findings illustrate that MDES computed from a two-level analysis with co-
variates are almost identical to those computed from a three-level analysis with the 
same data and covariates. This can be seen by comparing the conditional MDES from a 
three-level analysis for a given outcome measure with its counterpart from a two-level 
analysis. To the extent that these results are similar to each other, using a two-level 
analysis, which does not account explicitly for the middle level of a three-level situa-
tion, does not produce misleading results when covariates are used. This is the case for 
all outcome measures that were examined. For example, the conditional MDES for Print 
Awareness is estimated to be 0.521 from a three-level analysis and 0.526 from a two-
level analysis.   

Table 6 compares only the estimated precision of two-level and three-level ana-
lyses for the original sample from which multilevel variances are estimated. These find-
ings do not necessarily extrapolate to the typical situation in practice, where multilevel 
variances and R-squared values are computed from data for an existing study and then 
used to design a future study with a different sample size and structure. One way to 
emulate this common situation is to vary the assumed sample structure and recompute 
minimum detectable effects for two-level and three-level analyses.  

Table 7 reports such findings. Columns one and two report three-level and two-
level unconditional MDES for the original sample for each outcome measure (which are 
also reported in Table 6). Columns three and four report corresponding findings after 
doubling the number of classrooms per school but holding constant the number of stu-
dents per classroom. Columns five and six report corresponding findings after doubling 
the number of students per classrooms but holding constant the number of classrooms 
per school. This provides three different comparisons of three-level versus two-level 
estimates of statistical precision. And each comparison represents a markedly different 
ratio of students to classrooms to schools. In all cases, the estimated MDES for three-
level and two-level analyses are essentially the same. 

Up until now our discussion has been focused on the variance components and 
MDES of two- versus three-level models. An additional question is whether or not the 
point estimate and standard errors on a treatment indicator included at the school level 
remain the same, whether or not a two- or three-level model is estimated. This question 
is particularly important, since in many instances researchers are not able to explicitly 



 

 

Table 7 Minimum Detectable Effect Sizes for Alternative Sample Structures

Outcome 3-Level Model 2-Level Model 3-Level Model 2-Level Model 3-Level Model 2-Level Model

Academic Outcomes
    Print Awareness  (CLIMBERs) 0.735 0.737 0.728 0.732 0.711 0.713
    Blending (CLIMBERs) 0.559 0.560 0.545 0.555 0.516 0.523
    Elision  (CLIMBERs) 0.373 0.374 0.313 0.351 0.294 0.290
    Expressive Vocabulary (CLIMBERs) 0.482 0.495 0.431 0.487 0.429 0.448
    Stanford 9 total math scaled score                             0.259 0.259 0.255 0.259 0.221 0.221
    Stanford 9 total reading scaled score                         0.261 0.264 0.248 0.264 0.225 0.226
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)     0.305 0.305 0.305 0.305 0.282 0.282
    Attendance                                            0.211 0.210 0.201 0.210 0.162 0.159
Emotional and Behavioral Outcomes
    Conners’ ADHD Index 0.203 0.202 0.188 0.202 0.165 0.162
    Cognitive Problems/Inattention 0.186 0.187 0.180 0.187 0.143 0.143
Health Outcomes
    Body Mass Index percentile 0.167 0.167 0.167 0.167 0.118 0.118
    At risk of overweight 0.172 0.172 0.172 0.172 0.125 0.125
Sources: Where indicated, data are from  CLIMBERs database; all other data are from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model of the outcome measure without 
             covariates.  All analyses include an indicator variable distinguishing treatment and control groups; all analyses for
             outcomes from the SBPP database also include indicator variables for school districts in the study sample.

Minimum Detectable Effect Size Without Covariates
Original Sample Structure Double Number of Classes Double Number of Students
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link students to classes within schools and have no choice but to estimate a two-level 
model, despite the three-level structure of the data.   

It can be shown that estimating a three-level model using Ordinary Least 
Squares (OLS) (that is, ignoring the nested nature of the data entirely) will provide un-
biased estimates of impacts but will not be efficient, because the standard errors do not 
account for the nested nature of the data (Cheong, Fotiu, and Raudenbush, 2001). On 
the other hand, as shown in Appendix D, using feasible generalized least squares, which 
accounts for the nested nature of the data, will provide consistent and asymptotically 
efficient estimates for a three-level model if the sample size is large enough.16 The ques-
tion here is whether we can obtain consistent estimates of program impact if we mis-
specify the model by ignoring the second level of nesting, and whether the estimates 
will be asymptotically efficient.   

The proof in Appendix D shows that for balanced samples (that is, the same 
number of students per classroom and the same number of classrooms per school) with 
no covariates at the student or classroom level, you will obtain identical estimates of 
program impact and identical standard errors, whether you explicitly account for the 
second level of nesting or not. These proofs are based on data that are balanced, which 
is rarely the case in practice, and do not consider situations in which covariates are in-
cluded at the student or classroom level. In addition, these proofs are for the expected 
values of the estimators being considered, not for specific estimates from a given sam-
ple. Therefore, Tables 8 and 9 show empirically how the estimates vary if we introduce 
unbalanced designs and/or covariates at lower levels of the model.   

Table 8 shows point estimates and standard errors on a school-level treatment 
indicator estimated using both a two- and three-level model, for selected outcomes from 
both the SBPP data and the CLIMBERs data. No covariates other than treatment status 
indicator and indicators for different sites were included in these models. While the 
point estimates are not identical, they are extremely close. This is true despite the range 
of outcomes explored and variations in the class-level Intra-Class Correlations (ICCs) 
for the various outcomes. The same is true of the standard errors of the estimates. Table 
9 shows these same models, but with student-level covariates included.17 The pattern of 
findings is the same, confirming empirically that the practice of using two-level models 
(students nested in schools), rather than three-level models (students in classrooms in 
schools), to estimate school-level treatment effects does not lead to misleading findings. 

                                                 
16The crucial sample size is the number of level-3 units, and it depends upon how large the variation 

is among these units and how unbalanced the data are. Cheong, Fotiu, and Raudenbush (2001) provide a 
simulations study to probe the adequacy of level-3 sample sizes. 

17Students’ age, gender, ethnicity, and eligibility for free/reduced-price lunch are included as cova-
riates in all SBPP outcomes. For math and reading scores, breakfast participation, and attendance, stu-
dents’ preprogram measures of the outcome variable were also included in the regression.   
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Even when the data are substantially unbalanced, the estimator based on the 
mis-specified model will still be consistent (See Equation D.29 in Appendix D). How-
ever, estimated standard errors will not generally be correct. To obtain accurate standard 
errors, one may use Huber-White corrected standard errors clustered at the school level, 
as long as the number of schools is not too small (Raudenbush and Bryk, 2002). 
Cheong, Fotiu, and Raudenbush (2001) have conducted a simulation study of the beha-
vior of these robust standard errors when the three-level model is mis-specified as a 
two-level model, just as in our study. 

Interpretation 
This section demonstrates that the current practice of not accounting explicitly 

for the middle level of a three-level situation when planning a group-randomized study 
is a reasonable concession to reality.  

Table 8 Three-Level vs. Two-Level Model Comparisons: Impact Estimates with No Covariates

Outcome Coefficient S.E. Coefficient S.E.

Academic Outcomes
    Print Awareness  (CLIMBERs) -0.444 2.545 -0.442 2.554
    Blending (CLIMBERs) 1.848 0.846 1.851 0.848
    Elision  (CLIMBERs) -0.193 0.488 -0.223 0.488
    Expressive Vocabulary (CLIMBERs) 3.045 3.067 2.992 3.142
    Stanford 9 total math scaled score                                   4.254 3.514 4.263 3.514
    Stanford 9 total reading scaled score                               4.959 4.061 5.060 4.074
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)     15.480 3.426 15.479 3.426
    Attendance                                            -0.354 0.269 -0.346 0.266
Emotional and Behavioral Outcomes
    Conners’ ADHD Index -0.442 0.786 -0.418 0.783
    Cognitive Problems/Inattention -0.499 0.770 -0.483 0.773
Health Outcomes
    Body Mass Index percentile 1.651 1.657 1.651 1.657
    At risk of overweight 0.023 0.028 0.023 0.028
Sources: Where indicated, data are from  CLIMBERs database; all other data are from the School Breakfast 
                Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model 
             of the outcome measure without covariates.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator 
             variables for school districts in the study sample.

Impact Estimates
Three-Level Model Two-Level Model



 

37 
 

 

In closing, three further points should be noted. The first point is one of clarifi-
cation. What this section has been discussing is not accounting explicitly for the class-
room variance component by subdividing total student variance into two components 
(for schools and students within schools), instead of three components (for schools, 
classrooms within schools, and students within classrooms). By doing so, part of the 
classroom-level variance component shows-up in estimates of the school-level variance 
component, and part shows-up in estimates of the student-level variance component. In 
this way, the classroom-level variance remains in the analysis of minimum detectable 
effects. Consequently, it is accounted for indirectly, even though it is not included di-
rectly. 

What the present section does not discuss is using a three-level analysis to com-
pute variance components for schools, classrooms, and students, and then not including 
the classroom component in computations of minimum detectable effects. Doing so will 
understate the true precision of a sample design whenever the classroom variance is 
nonzero. 

Table 9  Three-Level vs. Two-Level Model Comparisons: Impact Estimates with Student-Level Covariates

Outcome Coefficient S.E. Coefficient S.E.

Academic Outcomes
    Print Awareness  (CLIMBERs) 1.114 1.285 1.111 1.297
    Blending (CLIMBERs) 2.034 0.837 2.029 0.838
    Elision  (CLIMBERs) 0.022 0.464 0.019 0.426
    Expressive Vocabulary (CLIMBERs) 4.487 2.361 4.472 2.340
    Stanford 9 total math scaled score                                   -2.002 2.506 -2.015 2.502
    Stanford 9 total reading scaled score                                -1.507 2.299 -1.488 2.316
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)     16.778 2.733 16.778 2.734
    Attendance                                            -0.388 0.216 -0.385 0.204
Emotional and Behavioral Outcomes
    Conners’ ADHD Index -0.323 0.768 -0.287 0.769
    Cognitive Problems/Inattention -0.286 0.711 -0.281 0.676
Health Outcomes
    Body Mass Index percentile 1.813 1.655 1.813 1.655
    At risk of overweight 0.026 0.028 0.026 0.028
Sources: Where indicated, data are from  CLIMBERs database; all other data are from the School Breakfast 
                Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model 
             of the outcome measure without covariates.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator 
             variables for school districts in the study sample.
             Students' age, gender, ethnicity, and eligibility for free/reduced price lunch are included as covariates in all 
             SBPP outcomes.  For math and reading scores, breakfast participation, and attendance, students' preprogram  
             measures of the outcome variable were also included in the regression.

Impact Estimates
Three-Level Model Two-Level Model
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Secondly, our analyses do not include classroom-level covariates, such as teach-
er characteristics. If such covariates were to be collected and used in an impact analysis, 
then one would ideally account for them while planning a study. This can be done, 
however, only if appropriate information on unconditional intra-class correlations and 
R-squared values were available for all three levels, which to date has occurred only in 
rare instances. Whether or not this is an important problem is not clear, however. On 
one hand, the best covariates for student outcomes (the primary focus of most educa-
tional evaluations) are past values of the outcome being used for the impact analysis 
(“pretests”). If such information is at the student level, it can have substantial explanato-
ry power for all three levels of an analysis. Thus, the added predictive power of class-
room-level covariates might be modest.  

Finally, the preceding findings are contingent on the fact that the sample alloca-
tions (number of students per class and number of classrooms per school) are held con-
stant between the study used for planning purposes and the study being designed. 
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Part V 
Accounting for Uncertainty  

about Intra-Class Correlations 

As noted throughout this paper, researchers rely heavily on estimates of intra-
class correlations to design group-randomized studies because these parameters have a 
major effect on the required sample size. For example, in a two-level analysis, assuming 
an intra-class correlation of 0.15 instead of 0.05 can, under certain circumstances, al-
most double the number of clusters needed to obtain a given level of precision.  

Several factors should be considered when determining how much confidence to 
place in an estimate of an intra-class correlation for use in planning such studies. First, 
one must consider how similar the planned study sample will be to the sample used to 
estimate the intra-class correlation. For example, estimates of intra-class correlations 
from a small rural community may not be appropriate for planning a study that will take 
place in a large urban school district. Similarly, estimates of intra-class correlations 
based on a common outcome measure will most likely provide a better planning guide 
than those for different outcome measures. 

Another important and often overlooked consideration when assessing the ap-
propriateness of an estimated intra-class correlation for planning a study is the statistical 
uncertainty that exists about the estimate. This uncertainty depends on the number of 
clusters and subjects per cluster in the estimation sample. In addition, it depends on the 
true value of the intra-class correlation.  

Taking this uncertainty into account is especially important when a researcher 
might otherwise have confidence in an estimated intra-class correlation because it 
comes from the same population and is based on the same outcome measure as that for 
the study being planned. For example, a researcher using an estimated intra-class corre-
lation from a small-scale pilot study to plan a large-scale impact evaluation should con-
sider carefully the uncertainty that exists about the estimate of the intra-class correla-
tion. 

This section of the paper considers how to measure and interpret the uncertainty 
that exists about intra-class correlations for two-level research designs.18 Two-level de-
signs are considered because most studies to date have employed them and because the 

                                                 
18A similar problem of uncertainty arises when using estimated values of R-squared to plan a group-

randomized study. This issue is beyond the scope of this paper, however. 
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statistical properties of their intra-class correlations are relatively well understood. The 
discussion of uncertainty proceeds as follows: (1) it describes how standard errors and 
confidence intervals can be calculated for estimates of two-level intra-class correlations; 
(2) it examines the factors that influence these indicators of uncertainty; and (3) it illu-
strates their implications for findings from the Chicago Literary Initiative: Making Bet-
ter Early Readers study (CLIMBERs) and the School Breakfast Pilot Project (SBPP) 
study. 

Estimating Uncertainty for Intra-Class Correlations 
According to Siddiqui, Hedeker, Flay, and Hu (1996), the variance of an esti-

mated intra-class correlation for a two-level model was originally derived by Fisher 
(1925) and can be estimated as follows19: 
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where:  

  
ρ̂  = the estimated intra-class correlation;  
N  = the harmonic mean number of individuals per cluster; and 
J   = the total number of clusters. 

The standard error of the estimated intra-class correlation equals the square root 
of the expression in Equation 14. Note that this standard error assumes that all studies 
have the same true intra-class correlation and that the only variation that arises among 
their estimates is sampling error. In reality, the largest source of variation among studies 
may be differences in their true intra-class correlations. The estimates presented here 
cannot take this variation into account.  

Table 10 illustrates how the standard error derived from Equation 14 varies 
with ρ̂ , N, and J. First, note that as the number of clusters (J) increases, the standard 
error of the estimated intra-class correlation decreases. In fact, Equation 14 implies that

                                                 
19Equation 14 is subject to some debate. For example, Visscher (1998) argues that it is probably 

wrong because it takes an expression derived when ρ is known and substitutes an estimated value for ρ . 
In addition, variants of the formula replace N with N-1 or N-2. However, as long as the clusters contain at 
least 10 individuals, these differences in formulation are not important. The above formulation is quite 
accurate as ρ becomes small and N*J becomes large. 
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the estimated standard error is inversely proportional to the square root of J. For exam-
ple, with an estimated intra-class correlation of 0.5 and 10 individuals per cluster, thees-
timated standard error of the intra-class correlation decreases from 0.130 to 0.058 (by 
the square root of five) as the number of clusters quintuples from 10 to 50.   

Second, note that as the number of individuals per cluster (N) increases, the 
standard error of the estimated intra-class correlation also decreases, although this rela-
tionship is more complex than that for the number of clusters. For example, with an in-
tra-class correlation of 0.5 and a total of 10 clusters, the estimated standard error of the 
intra-class correlation decreases from 0.130 to 0.115 as the number of individuals per 
cluster quintuples from 10 to 50.  

The preceding results illustrate that a proportional increase in the number of 
clusters reduces the standard error of the intra-class correlation by far more than the 
same proportional increase in the number of individuals per cluster. Hence, the relative 
influence of clusters and individuals on the uncertainty about estimates of intra-class 
correlations is similar to their relative influence on the precision of intervention effects 
from group-randomized studies. 

Lastly, note that the standard error of an intra-class correlation decreases to a 
minimum as the value of the intra-class correlation approaches zero or one and increas-
es to a maximum as the value of the intra-class correlation approaches 0.5. For example, 
with 10 clusters and 10 individuals per cluster, the estimated standard error of the intra-
class correlation decreases from 0.130 to 0.081 or 0.043 as the value of the intra-class 
correlation changes from 0.5 to 0.1 or 0.9, respectively. 

Table 10 Standard Error of the Estimated Intra-Class Correlation (ICC)  
                Given the Estimated ICC, Cluster Size (N), and Number of Clusters (J)

10 Schools 50 Schools 10 Schools 50 Schools

0.0 0.047 0.021 0.009 0.004
0.1 0.081 0.036 0.048 0.021
0.2 0.106 0.047 0.078 0.035
0.3 0.122 0.055 0.099 0.044
0.4 0.130 0.058 0.112 0.050
0.5 0.130 0.058 0.115 0.052
0.6 0.121 0.054 0.110 0.049
0.7 0.103 0.046 0.096 0.043
0.8 0.077 0.035 0.073 0.032
0.9 0.043 0.019 0.041 0.018

Source: Authors' calculation based on Equation 14.

Students Per School=50
Intra-Class Correlation

Students Per School =10
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A confidence interval for an estimated intra-class correlation equals the point es-
timate (the actual estimated value), plus or minus a multiple of the estimated standard 
error. The multiple to use for this purpose is obtained from the t distribution for the con-
fidence level specified and the number of degrees of freedom available for estimating 
the cluster-level variance component, τ2.  

For example, assume that an intra-class correlation was estimated from a sample 
of 50 clusters with 10 individuals per cluster, using a two-level model with no cova-
riates. If the estimated intra-class correlation (the point estimate) were 0.20, then ac-
cording to Table 8, the estimated standard error would be 0.047. With no covariates and 
no treatment indicator variable, the number of degrees of freedom for estimating τ2 
equals the number of clusters minus one (J-1). This implies 49 degrees of freedom for 
the present example. For a t distribution with 49 degrees of freedom, the 95 percent 
confidence interval would be 0.20 + 2.01*0.047, which ranges from about 0.1 to 0.29. 
Consequently, there would be considerable uncertainty about the value of the intra-class 
correlation to use for planning the study.  

One way to account for this uncertainty is to assess sample size requirements us-
ing the lower bound of the confidence interval, the point estimate of the intra-class cor-
relation, and the upper bound of the confidence interval. The best single estimate of the 
sample size requirement is that based on the point estimate for the intra-class correla-
tion. But given the existing uncertainty about this estimate, it would be prudent to plan 
for a sample that is somewhat larger than that implied by the point estimate. Doing so 
would help guard against the possibility of underestimating the intra-class correlation 
and thus “undersizing” the study sample, thereby underpowering the study estimators.  

Uncertainty about Intra-Class Correlations for This Paper 
Table 11 presents point estimates, estimated standard errors, and 95 percent con-

fidence intervals for two-level unconditional intra-class correlations obtained from data 
for CLIMBERs and the SBPP study. (Equation 12 was used to estimate standard er-
rors). The first column in the table lists the estimated intra-class correlation for each 
outcome measure; the second column lists the estimated standard error of the intra-class 
correlation; and the final two columns list the corresponding 95 percent confidence in-
terval. 

These findings illustrate that the relatively small size of the CLIMBERs sample 
(with 430 students from only 23 schools) leaves considerable uncertainty about esti-
mates of intra-class correlations. For example, the confidence interval for Print Aware-
ness, the measure with the largest estimated intra-class correlation, ranges from 0.222 to 



 

 

Table 11 Standard Errors and 95 Percent Confidence Intervals for the Estimated Intra-Class Correlations (ICC)  
                from Unconditional Two-Level Models

Outcomes Intra-Class Correlation (ICC) Standard Error of ICC

Academic Outcomes
    Print Awareness  (CLIMBERs) 0.318 0.050 0.222 0.418
    Blending (CLIMBERs) 0.155 0.035 0.092 0.228
    Elision  (CLIMBERs) 0.032 0.015 0.001 0.059
    Expressive Vocabulary (CLIMBERs) 0.106 0.028 0.055 0.165
    Stanford 9 total math scaled score                                  0.092 0.009 0.074 0.110
    Stanford 9 total reading scaled score                             0.098 0.010 0.079 0.117
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)     0.206 0.017 0.173 0.239
    Attendance                                            0.023 0.003 0.017 0.029
Emotional and Behavioral Outcomes
    Conners’ ADHD Index 0.041 0.004 0.032 0.050
    Cognitive Problems/Inattention 0.021 0.003 0.015 0.026
Health Outcomes
    Body Mass Index percentile 0.000 0.001 -0.002 0.002
    At risk of overweight 0.006 0.001 0.004 0.009
Sources: Where indicated, data are from  CLIMBERs database; all other data are from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model of the outcome measure without 
             covariates.  All analyses include an indicator variable distinguishing treatment and control groups; all analyses for
             outcomes from the SBPP database also include indicator variables for school districts in the study sample.

95% Confidence Interval of ICC
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0.418; that for Elision, the measure with the smallest estimated intra-class correlation, 
ranges from 0.001 to 0.059. This means that the “true” value of the intra-class correla-
tion for Print Awareness is equally likely to be anywhere between 0.222 and 0.418, and 
the true value of the intra-class correlation for Elision is equally likely to be anywhere 
between 0.001 and 0.059. 

A comparison of these findings for the two outcome measures also illustrates 
how the magnitude of the underlying intra-class correlation affects the width of the con-
fidence interval, given a constant sample size and configuration. The width of the con-
fidence interval for Print Awareness (with a point estimate of 0.316) is 0.196, whereas 
the width of the confidence interval for Elision (with a point estimate of 0.032) is only 
0.058.   

Intra-class correlations from the SBPP were based on data for 800 to 1,000 students 
from approximately 100 schools or 8 to 10 students per school. (Samples vary across 
outcome measures due to missing data.) Hence, the uncertainty about these estimates is 
less than for estimates from the CLIMBERs sample. For participation in the school 
breakfast program, the SBPP measure with the largest estimated intra-class correlation, 
the confidence interval is 0.173 to 0.239. For “at risk of overweight,” the SBPP measure 
with the smallest nonzero estimated intra-class correlation, the confidence interval is 
0.004 to 0.009. A comparison of results for these two outcome measures also illustrates 
how the magnitude of the intra-class correlation affects the width of its confidence in-
terval, given a constant sample size. 

Implications of Uncertainty for Sample Design 
Table 12 illustrates the implications of the preceding uncertainty for designing a 

group-randomized study. The first column in the table lists the predicted minimum de-
tectable effect size (MDES) for an illustrative research design, given the lower bound of 
the confidence interval of the intra-class correlation for each outcome measure in Table 
9. The second column presents corresponding results for the point estimate of the intra-
class correlation, and the third column presents corresponding results for the upper 
bound of its confidence interval. The research design assumes 50 schools, with half 
randomized to treatment, 40 students per school, and use of the best-predicting cova-
riates for each outcome measure (those used for Tables 1 and 3).  

Note that the width of confidence intervals for MDES varies substantially across 
outcome measures in accord with the estimated standard errors for intra-class correla-
tions. The width of this interval represents the degree of uncertainty that exists about the 
likely precision of impact estimates for the assumed research design. For example, the
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confidence interval of MDES for Blending (from CLIMBERs) is quite wide, ranging 
from 0.230 to 0.329 standard deviations. In contrast, the confidence interval of MDES 
for school breakfast participation (from the SBPP study) is much narrower, ranging 
from 0.275 to 0.317 standard deviation.  

Table 13 moves the discussion of uncertainty a step further by translating the 
findings in Table 10 into their implications for the number of randomized schools 
needed to achieve a MDES of 0.25 standard deviations. The first column in the table 
assumes the lower bound of the confidence interval for each intra-class correlation, the 
second column assumes the point estimate, and the third column assumes the upper 
bound of the confidence interval. These findings provide a readily interpretable way to 
view the implications for research design of uncertainty about intra-class correlations. 

 

 

Table 12 Minimum Detectable Effect Sizes (MDES) Associated with 95 Percent Confidence Intervals 
                 of the Estimated Intra-Class Correlation (ICC), from Two-Level Model with Covariates

Outcomes Lower Bound Point Estimate Upper Bound

Academic Outcomes
    Print Awarenessb (CLIMBERs) 0.186 0.207 0.226
    Blendingb(CLIMBERs) 0.230 0.284 0.329
    Elisionb (CLIMBERs) 0.126 0.146 0.163
    Expressive Vocabularyb(CLIMBERs) 0.133 0.140 0.146
    Stanford 9 total math scaled scorea,c                                   0.173 0.188 0.202
    Stanford 9 total reading scaled scorea,c                                0.120 0.127 0.134
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)c     0.275 0.297 0.317
    Attendancec                                            0.113 0.119 0.124
Emotional and Behavioral Outcomes
    Conners’ ADHD Indexc 0.184 0.197 0.209
    Cognitive Problems/Inattentionc 0.119 0.119 0.119
Health Outcomes
    Body Mass Index percentilec 0.121 0.125 0.129
    At risk of overweightc 0.131 0.135 0.139
Sources: Where indicated, calculations are based on data from  the CLIMBERs database; all other calculations are based 
                on data from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the intra-class correlations were obtained from a three-level model of the outcome measure without 
             covariates. Estimated values for R-squared were obtained from a three-level model of the outcome measure with and without 
             student-level and school-level covariates where available.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator variables 
             for each school district in the study sample.
             aBaseline measure of the outcome variable is included as prior achievement measure in the model.
             bBaseline measure of other academic outcomes is included as prior achievement measure in the model.
             cStudent-level demographic information (age, ethnicity, gender, eligibility for free/reduced lunch) is included in the model.

MDES associated with 95% Confidence Interval of ICC
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Consider findings for the Blending measure from CLIMBERs. For this measure 
the projected number of required schools ranges from 42 to 86, with a point estimate of 
64. This means that existing uncertainty about the value of the underlying intra-class 
correlation is so great that it is difficult to know how many schools are required. In con-
trast, findings for the Cognitive Problems/Inattention measure from the SBPP study re-
flect virtually no uncertainty (at least with respect to estimation error for the intra-class 
correlation) and thereby provide much clearer guidance for designing an experimental 
sample. Findings in the table suggest that this outcome would require about 11 rando-
mized schools to achieve a MDES of 0.25 standard deviations.  

Two main factors create the preceding differences in uncertainty about required 
sample sizes. First, the CLIMBERs sample has more schools from which to estimate an 
intra-class correlation than the SBPP sample (23 versus 100). Second, the value of the 

Table 13 Number of Schools Needed for Minimum Detectable Effect Size (MDES) of  0.25

Outcomes ICC = Lower Bound ICC = Point Estimate
pp

Bound

Academic Outcomes
    Print Awarenessb (CLIMBERs) 28 34 41
    Blendingb(CLIMBERs) 42 64 86
    Elisionb (CLIMBERs) 13 17 21
    Expressive Vocabularyb(CLIMBERs) 14 16 17
    Stanford 9 total math scaled scorea,c                                   24 28 33
    Stanford 9 total reading scaled scorea,c                             12 13 14
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)c    61 70 80
    Attendancec                                            10 11 12
Emotional and Behavioral Outcomes
    Conners’ ADHD Indexc 27 31 35
    Cognitive Problems/Inattentionc 11 11 11
Health Outcomes
    Body Mass Index percentilec 12 13 13
    At risk of overweightc 14 14 15
Sources: Where indicated, calculations are based on data from  the CLIMBERs database; all other calculations are based 
                on data from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the intra-class correlations were obtained from a three-level model of the outcome measure without 
             covariates. Estimated values for R-squared were obtained from a three-level model of the outcome measure with and without 
             student-level and school-level covariates where available.  All analyses include an indicator variable distinguishing 
             treatment and control groups; all analyses for outcomes from the SBPP database also include indicator variables 
             for each school district in the study sample.
             aBaseline measure of the outcome variable is included as prior achievement measure in the model.
             bBaseline measure of other academic outcomes is included as prior achievement measure in the model.
             cStudent-level demographic information (age, ethnicity, gender, eligibility for free/reduced lunch) is included in the model.

Number of Schools Needed for MDES = 0.25
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intra-class correlation for Blending is larger than that for Cognitive Prob-
lems/Inattention. Both of these differences produce relatively more uncertainty about 
the intra-class correlation for Blending than for Cognitive Problems/Inattention.  

Further Thoughts  
This part of the paper has considered how to quantify the uncertainty that exists 

about intra-class correlations due to statistical estimation error and how to reflect this 
uncertainty in the sample size requirements of group-randomized studies. However, 
translating this information into sample size decisions is further complicated by several 
additional factors.  

First, researchers must also consider the uncertainty that exists about estimates 
of the predictive power (R-squared) of covariates that will be used for a proposed im-
pact analysis. Thus, future research should focus on how to quantify this uncertainty 
and how to obtain empirical information about its magnitude. A next logical step in this 
progression of knowledge would be to study the joint variation of estimates of intra-
class correlations and R-squared values.  

When this information becomes available, it will be possible to simulate how the 
joint uncertainty about these two planning parameters influences uncertainty about 
sample size requirements. With this information, a more fully-informed analysis of un-
certainty about sample size requirements can be conducted as part of the planning 
process for group-randomized studies. 

Nevertheless, there will always remain a need for researchers to translate infor-
mation about uncertainty into decisions about sample size; and, to some extent, this step 
is fundamentally judgmental. Therefore, it must take into account the researchers’ and 
research funders’ attitudes toward risk, plus the cost structure of a proposed project. For 
example, other things being equal, a sample design for a high-profile study with high 
stakes attached to detecting intervention effects (if they exist) should tend to minimize 
the risk of inadequate precision. To do so would require erring on the side of a sample 
that might be larger than what is projected to be necessary.  

In principle, one could develop a guide for such decisions by expanding the con-
cept of confidence intervals to compute a probability distribution of required sample 
sizes for a given study design and desired level of precision. For example, one might 
simulate the required sample size at the 10th, 20th, 50th, 80th, and 90th percentiles, given 
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whatever information is available to quantify existing uncertainty.20 If such information 
could be obtained, then researchers could consciously decide how to manage their risks 
by choosing a sample size within this distribution. For example, in the previous exam-
ple, where there would be considerable aversion to the risk of inadequate precision, a 
researcher might choose the projected sample size at the 80th or 90th percentile of the 
projected distribution. Of course, this would be possible only if the resources to do so 
were available.  

                                                 
20The 95 percent confidence intervals and point estimates in Table 11 represent the 5th, 50th, and 95th 

percentiles of probability distributions for required sample sizes, based on estimated uncertainty about 
intra-class correlations.   
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Part VI 
Afterword 

The goal of this paper is to provide practical guidance for researchers who are 
designing studies that randomize groups to measure the impacts of interventions on 
children. The paper has proceeded by: (1) providing new empirical information about 
variance parameters that influence the precision of impact estimates; (2) examining the 
implications of planning group-randomized studies for three-level hierarchical situa-
tions, using empirical information obtained from estimating two-level models that omit 
the middle level; and (3) assessing the magnitude and implications of uncertainty that 
exists when estimating intra-class correlations for planning group-randomized studies. It 
is hoped that each of these small steps will move forward the current state of science of 
group-randomized studies. 
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Appendix A 
Description of Outcome Measures 

This Appendix presents detailed descriptions of the outcome measures discussed 
in the paper.21  

Academic Outcomes 
Academic outcomes are measured by conventional standardized achievement 

test scores. This paper includes the following measures:  

Four subtests of the Preschool Comprehensive Test of Phonological and Print 
Processing22 are used in CLIMBERs: 

• Print Awareness: The Print Awareness subtest measures beginning know-
ledge about written language, for example, knowing what print looks like 
and how it works. Items measure whether children recognize individual let-
ters, know what sounds letters make, and are able to differentiate words from 
pictures and other symbols.   

• Elision: The Elision subtest tests a child’s ability to segment spoken words 
into smaller parts, by deleting parts and then recalling the portion of the 
word. For example, “Say cup without saying /K/.” 

• Blending: The Blending subtest measures the child’s ability to put sounds 
together to form words. For example, “What word do these sounds make: ‘t-
oi’ ”? 

• Expressive Vocabulary: The Expressive Vocabulary subtest measures the 
number of different vocabulary words an individual uses when he/she speaks 
or writes.  

The Stanford 9 math and reading achievement tests (for the SBPP) measure total 
test scores in scaled score points. 

                                                 
21Discussions in this appendix are mainly based on Abt Associates Inc. and Promar (2005). 
22The Pre-CTOPPP measures phonological skills development, which has been shown to be an im-

portant precursor to reading. The Pre-CTOPPP has not yet been published, and to date there is very little 
information about its psychometric properties — but it has been used widely with middle-income and 
low-income samples.   
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Academic-Related Outcomes 
These measures, all from the SBPP, are not conventional direct measures of stu-

dent academic performance. Rather, they measure children’s behavior and other cogni-
tive skills assessed in nonconventional ways. The following measures are included in 
this paper: 

Participation, Attendance, and Tardiness 
All districts have computerized attendance records that were used for this analy-

sis. Attendance is defined as the number of days present at school, divided by the total 
number of school days the child was enrolled. Tardiness is defined as the number of 
days the student was late as a percentage of the number of school days the child was 
enrolled. Data on tardiness were not consistently available for all schools and districts. 
The amount of missing information is important to consider when interpreting the re-
sults. 

Stimulus Discrimination 
The Stimulus Discrimination measure (Detterman, 1988) has been used to assess 

the effects of breakfast on children’s cognitive performance in several studies (Pollitt, 
Lewis, Garza, and Shulman, 1982/83; Pollitt and Matthews, 1998). The Stimulus Dis-
crimination task is appropriate for children as young as 6 years of age. It is administered 
on a laptop computer and takes approximately 10 minutes to complete. It is appropriate 
for non-English speakers, as the entire task consists of attention to visual stimuli. 

The Stimulus Discrimination measure is a modified match-to-sample test. The 
child is presented with six empty windows in a row slightly below the center of the 
screen. Centered above this row of windows is a probe window. When the child presses 
the space bar, the six windows each display a different stimulus. The probe window 
displays a probe identical to one of the stimulus items in the row below. The child needs 
to find the match to the probe in the bottom row, lift his/her finger, and touch the num-
ber key corresponding to the proper match. 

When the child lifts his/her finger, all windows become empty. To view the 
items again, he/she has to press the space bar. The child views the stimulus display as 
long as desired, but the bar has to be pressed, or the display will show only empty win-
dows. 

After four practice trials, the child continues with the task until he/she responds 
correctly to 72 trials or completes 280 trials. Thus, the pacing of the task is entirely de-
termined by the child. If, however, the child is not close to finishing 72 correct trials 
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after 15 minutes, the task is aborted so as to conserve time for the other components of 
the student interview. The variables used for analysis are as follows: 

• Total Number of Trials: number of trials completed and number of trials in-
correct; 

• Average Viewing Time: total time of viewing stimuli averaged across all tri-
als; and 

• Average Trial Time: time in seconds from first press of space bar to answer; 
the total viewing and response time averaged across all trials. 

Digit Span 
The Digit Span task is a subtest of the Wechsler Intelligence Scales for Children 

III (WISC-III) (Wechsler, 1991). The WISC-III is a widely used standardized intelli-
gence test with nationally representative norms. Subtests from the WISC-III are com-
monly used in developmental and neuropsychological research to assess child cognitive 
performance. It has previously been used to assess the effects of breakfast on child cog-
nitive performance in several studies (Jacoby et al., 1996; Simeon and Grantham-
McGregor, 1989). The Digit Span task is appropriate for children as young as 6 years of 
age and takes approximately five to seven minutes to administer. 

The Digit Span task assesses short-term auditory memory and attentional abili-
ties. A computer administration of the Digit Span was created for the SBPP evaluation. 
Through headphones, the child heard a recorded series of digits played by the computer. 
The child then repeated the series back to the tester, forwards in the first part of the task 
and backwards in the second part of the task. 

On Digit Span Forwards, there were eight items, each with two trials of number 
series equal in length. The items increased in length until the child gave incorrect res-
ponses on both trials of any item or until the child reached the last trial, which is nine 
numbers on Digit Span Forwards and eight numbers on Digit Span Backwards. A total 
raw score of between 0 and 30 was possible on the Digit Span Task (Forwards + Back-
wards). This total raw score was then converted to a scaled score based on the child’s 
age in years and months, to be used in the analysis.  

Verbal Fluency 
Verbal Fluency tasks are widely used to evaluate neuropsychological function-

ing in the areas of long-term verbal memory and retrieval and have been used in a num-
ber of studies of the effects of breakfast consumption on cognitive functioning (Simeon 
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and McGregor, 1989.) The Verbal Fluency task was considered age-appropriate for the 
children in the SBPP sample and takes approximately three minutes to administer.  

Two scored trials of Verbal Fluency were administered following a practice trial 
to ensure that the child understood the task. The child was asked to name as many items 
as possible in two semantic categories (“animals” and “things to eat”) in a period of 60 
seconds each. The examiner recorded all of the child’s answers, and the score equaled 
the total number of correct responses for each trial. As noise was a concern, headphones 
were worn during the task. Scores for both the Animals and Things to Eat trials were 
used for analysis, as well as a total of the two scores. 

Children’s Emotional and Behavioral Outcomes 
The SBPP also provides a wide range of psychosocial and behavioral measures 

for young children, which are rare in studies in the education research field. This pro-
vides valuable information in terms of power calculation for design of studies including 
such outcomes. 

Social/Emotional Functioning 
In this study, social and emotional functioning was assessed through the Pedia-

tric Symptom Checklist (PSC) (Murphy et al., 1998), included in the Parent Survey. 

The PSC was developed for pediatricians to use as a screening tool for psy-
chosocial problems. The version of the PSC used in this study is a 17-item question-
naire covering a broad range of children’s social and emotional functioning, with the 
parent as the intended respondent (Gardner et al., 1999). The items are rated as “never,” 
“sometimes,” or “often” and are scored 0, 1, or 2, respectively. Item scores are summed, 
and the total score is recoded as a dichotomous variable. A score of 15 or higher is con-
sidered positive for psychosocial impairment. A score below 15 is negative. Examples 
of items include: “Feels sad, unhappy;” “Acts as if driven by a motor;” “Teases others;” 
and “Does not understand other people’s feelings.” Researchers indicate that nationally 
the prevalence of scores of 15 or higher is about 12 percent for middle class or “gener-
al” settings (http://psc.partners.org/psc_basic.htm). The mean of the 17-item question-
naire is about 8.23  

                                                 
23Communication with Michael Murphy.   
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Analyses of the PSC for this paper included a comparison of treatment and con-
trol students on total scores and on percentage of students considered psychosocially 
impaired. 

Behavior 
Behavioral measures used in the study come from two sources. The first one, 

Conners’ Teacher Rating Scales-Revised, CTRS-R(s), is a part of a larger set of meas-
ures, the Conners’ Rating Scales, which have long been used to assess psychopathology 
and behavior issues, such as problems with conduct, anxiety, and social functioning, as 
well as Attention Deficit Hyperactivity Disorder (ADHD) in children and adolescents 
(Conners, 2000). The CTRS-R(s) consists of 28 questions in which the teacher rates the 
child on a scale from 0 (not true at all/never or seldom) to 3 (very much true/very often 
or very frequent) and can be completed in an estimated five to 10 minutes. In scoring 
the CTRS-R(s), the 28 items are tallied within four constructs and are then scaled ac-
cording to age and gender. They are as follows: 

• Conners’ ADHD Index: Identifies children “at risk” for ADHD24 

• Cognitive Problems/Inattention: High scorers may have more academic dif-
ficulties than most individuals their age, have problems organizing their 
work, have difficulty completing tasks or schoolwork, and appear to have 
trouble concentrating on tasks that require sustained mental effort. 

• Hyperactivity: High scorers have difficulty sitting still, feel more restless and 
impulsive than most individuals their age, and have the need to always be on 
the go. 

• Oppositional: Individuals scoring high on this scale are more likely to break 
rules and have problems with persons in authority and are more easily an-
noyed and angered than most individuals their age. 

The second source, the Effortful Control Scale, is comprised of a subset of ques-
tions from the Children’s Behavior Questionnaire (CBQ), a highly differentiated as-
sessment designed to measure temperament in children (Rothbart, Ahadi, and Evans, 
2000). Two subscales, Ability to Focus (constructed from seven items) and Ability to 
Follow Instructions (constructed from six items), are used in this analysis. 
                                                 
24The four subscales were tested for internal consistency using Cronbach’s alpha. Each subscale had high 
coefficients of reliability, ranging from .90 to .96, signaling that the individual items in each construct fit 
together very well in measuring the four latent constructs. 
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Health Outcomes 
The SBPP also contains measures for student’s basic health status, which are 

very important for studies in child development: 

• Body Mass Index percentile 

• The percentage of students “at risk of overweight” 

• The percentage of students considered “overweight” 

• Student’s weight status 

• Student’s height 

• Student’s weight 
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Appendix B 
Definition of the Multiplier M 

The minimum detectable effect of a program impact estimator is a multiple M of 
its standard error (Bloom, 1995). Figure B.1 illustrates why this is the case. The bell-
shaped curve on the left represents the t distribution, given that the true impact equals 0; 
this is the null hypothesis. For a positive-impact estimate to be statistically significant at 
the α  level for a one-tailed test (or at the 2/α  level for a two-tailed test), it must fall to 
the right of the critical t-value, αt (or 2/αt ), of this distribution. The bell-shaped curve 
on the right represents the t distribution, given that the impact equals the minimum de-
tectable effect; this is the alternative hypothesis. For the impact estimator to detect the 
minimum detectable effect with probability 1- β  (that is, to have a statistical power lev-
el of 1- β ), the effect must lie a distance of β−1t  to the right of the critical t-value of the 
alternative hypothesis and a distance of βα −+ 1tt  (or βα −+ 12/ tt ) from the null hypothe-
sis. Because t-values are expressed as multiples of the standard error of the impact esti-
mator, the minimum detectable effect is also a multiple of the impact estimator.  Thus, 
for a one-tailed test,  

  βα −+= 1ttM        (B.1) 
and for a two-tailed test: 

  βα −+≈ 12/ ttM       (B.2) 
The t-values in these expressions reflect the number of degrees of freedom 

available for the impact estimator, which for the full sample equals the number of clus-
ters minus two (J-2).  The multiplier for the full sample is thus referred to a 2−JM . 
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Figure B.1 The Minimum Detectable Effect Multiplier 

 
    One-Tailed Multiplier βα −+= 1ttM  
    Two-Tailed Multiplier βα −+≈ 12/ ttM  
Source: Illustration by the authors. 
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Appendix C 
Complete Set of Results for Three-Level vs.  

Two-Level Model Comparisons: Nonstandardized  
Unconditional Variance Components 

 
Appendix Table C1 contains the following information for all outcome measures 

discussed in Appendix A: (1) the sample size and structure for each outcome measure, 
including numbers of districts, schools, classes, and students; and (2) the nonstandar-
dized unconditional variance components estimated using a three-level model and a 
two-level model, including estimated variance components at each level of the model, 
as well as the estimated total variance, all of which are in the original measurement unit 
of each outcome. 



 

 

Appendix Table C1  Three-Level vs. Two-Level Model Comparisons: Nonstandardized Unconditional Variance Components

Outcomes
Number of 

districts
Number of 

schools
Number of 

classes
Number of 

students School Class Student Total School Student Total

Academic Outcomes
    Print Awareness (CLIMBERs) 1 23 47 430 32.2 1.7 70.6 104.4 33.2 71.4 104.6
    Blending (CLIMBERs) 1 23 47 430 3.0 0.2 17.0 20.2 3.1 17.1 20.2
    Elision  (CLIMBERs) 1 23 47 430 0.0 1.1 14.8 15.9 0.5 15.4 15.9
    Expressive Vocabulary (CLIMBERs) 1 23 47 430 19.8 32.5 306.2 358.5 38.2 321.1 359.3
    Stanford 9 total math scaled score                                   4 97 200 791 115.1 36.4 1,273.2 1,424.7 131.4 1,293.2 1,424.6
    Stanford 9 total reading scaled score                                4 97 200 780 108.8 159.0 1,581.9 1,849.6 181.8 1,666.5 1,848.3
Academic-Related Outcomes
    Breakfast participation (adjusted for attendance)    6 100 208 935 193.4 0.0 745.9 939.2 193.5 745.8 939.3
    Attendance                                            6 111 230 831 0.0 0.8 13.0 13.9 0.3 13.5 13.9
    Days tardy as a percentage of number of school days enrolled 5 56 112 483 1.1 0.0 13.5 14.6 1.1 13.5 14.6
    Stimulus Discrimination: number of trials incorrect  6 111 233 1,141 0.0 0.1 2.6 2.8 0.0 2.7 2.8
    Stimulus Discrimination: average trial time 6 111 233 1,141 0.1 0.1 1.3 1.5 0.1 1.4 1.5
    Stimulus Discrimination: average viewing time 6 111 233 1,141 0.1 0.1 1.3 1.4 0.1 1.3 1.4
    Digit Span: forward and backward combined and scaled by age 6 111 233 1,144 0.2 0.0 9.2 9.4 0.2 9.2 9.4
    Verbal Fluency: number of animals named 6 111 233 1,158 1.1 0.9 18.2 20.1 1.4 18.7 20.1
    Verbal Fluency: number of things to eat named 6 111 233 1,158 0.8 0.8 17.7 19.3 1.1 18.2 19.3
    Verbal Fluency: VF_ani and VF_eat combined 6 111 233 1,158 3.3 2.8 55.1 61.2 4.4 56.7 61.1
Emotional and Behavioral Outcomes 6 111 233 927 0.0 0.0 0.1 0.1 0.0 0.1 0.1
    Pediatric Symptom Checklist (PSC) status, 0=non-PSC case 1=PSC case 6 111 233 927 0.6 0.6 27.1 28.3 0.9 27.4 28.3
    Sum of 17 PSC questions
    Conners’ ADHD Index 6 111 226 1,050 0.9 9.1 107.3 117.3 4.8 112.5 117.3
    Cognitive Problems/Inattention 6 111 226 1,073 0.6 4.4 128.8 133.9 2.8 131.2 133.9
    Hyperactivity 6 111 225 1,045 0.0 7.6 95.7 103.3 2.0 101.2 103.2
    Oppositional Behavior 6 111 225 1,039 0.0 3.8 100.5 104.3 1.8 102.6 104.3
    Ability to Focus 6 111 228 1,092 0.0 0.3 1.9 2.2 0.1 2.1 2.2
    Ability to Follow Instructions 6 111 228 1,092 0.0 0.3 1.8 2.1 0.1 2.0 2.1
Health Outcomes
    Body Mass Index percentile 6 111 233 1,150 0.0 0.0 784.4 784.4 0.0 784.4 784.4
    At risk of overweight 6 111 233 1,150 0.0 0.0 0.2 0.2 0.0 0.2 0.2
    Considered overweight 6 111 233 1,150 0.0 0.0 0.1 0.1 0.0 0.1 0.1
    Weight status 6 111 233 1,150 0.0 0.0 0.6 0.6 0.0 0.6 0.6
    Height 6 111 233 1,151 0.8 0.4 44.9 46.0 0.9 45.1 46.0
    Weight 6 111 233 1,151 1.5 1.5 83.1 86.2 2.2 84.0 86.2
Sources: Where indicated, data are from  the CLIMBERs database; all other data are from the School Breakfast Pilot Project (SBPP) year 1 follow-up database.
Notes: Estimated values for the variance components were obtained from a three-level model and a two-level model of the outcome measure without covariates.  All analyses include an indicator variable    
           distinguishing treatment and control groups; all analyses for outcomes from the SBPP database also include indicator variables for school districts in the study sample.
             

Two-Level ModelThree-Level Model
Nonstandardized  Unconditional Variance Components
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Appendix D 
Proofs of the Relationship Between Three-Level Models 

and Two-Level Models in Terms of Precision 
 
This appendix demonstrates the following: (1) that the minimum detectable effect size 
(MDES) for the two-level model is equivalent to the MDES for the three-level model; 
(2) when data in an experiment are generated by a three-level model (e.g., students 
nested within classrooms, classrooms nested within schools with randomization at level 
3) but are analyzed using a two-level hierarchical model, the results will be consistent 
but inefficient; and (3) in special cases the two-level and three-level results will be iden-
tical, yielding consistent and asympotically efficient results.  
 
Minimum Detectable Effect Size  
 
We begin by deriving the expected mean squares for the “true three-level model” and 
then for the “two-level model reflecting a three-level data structure.” 
 
Three-Level Model  
This model corresponds to Design A discussed in Part IV of the paper. Let Yijk be the 
observed outcome for student ),...,1{ ANi =  in classroom ),...,1{ Kk =  in school 

),...,1{ Jj = . The model is then  

ikjkjikj eY += 0π   ),0(~ 2
Aikj Ne σ          (Level 1) (D.1) 

kjjkj r0000 += βπ   ( )2
0 ,0~ Akj Nr γ           (Level 2) (D.2) 

jjjj uT 001000000 ++= γγβ  ),0(~ 2
00 Aj Nu τ          (Level 3) (D.3) 

where  π0kj is the mean for classroom k in school j;  
β00j is the mean for school j;  
γ000 is the grand mean;  

 jT = 1 if school j has been assigned to the experimental condition, 0 if control; 
 eikj is a deviation associated with each student; 
 r0kj is a deviation associated with each classroom; 
 u00j is a deviation associated with each school; 
 2

Aσ  is the between-student variance within classrooms; 
 2

Aγ  is the between-classroom variance within schools; and  
 2

Aτ  is the between-schools variance.  
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Total Sum of Square (TSS): 
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Expected between-schools mean square (level 3): 
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Expected between-classrooms mean square (level 2): 
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Expected between-students mean square (level 1): 
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Two-Level Model Reflecting a Three-Level Data Structure 

 Let ∗
abY  be the observed outcome for student ),...,1{ BNa =  in school ),...,1{ Jb = . 

Then  
**

0
*

abbab eY += β   ( )2* ,0~ Bab Ne σ  (Level 1)  (D.8)
  

*
001

*
00

*
0 bbb rT ++= γγβ  ( )2*

0 ,0~ Bb Nr τ   (Level 2)  (D.9) 
  

where b0*β  is the mean for school b;  

00*γ  is the grand mean; 
 bT = 1 if school j has been assigned to the experimental condition, 0 if control; 

*
abe  is a deviation associated with each student; 
*

0br  is a deviation associated with each school; 
2
Bσ is the between-student variance within schools; and  

 2
Bτ  is the between-school variance.  

Since the two-level model (with students at level 1 and schools at level 2) is be-
ing used to model a three-level data structure (with students nested within classrooms 
nested within schools), it follows that KNN AB =  and the total number of schools, J, 
stays the same for both models.  

The total sum of squares is by definition the same as that for the three-level model.  
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Expected between-school mean square (level 2): 
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Note it is also the case that 
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Expected within-schools mean square (level 1): 
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Note that   

)(ˆ 22
schoolswithinB MSE −=σ         (D.13) 

 
and Equation D.10 shows that 
 

( ) 22*
BBBschoolsbetween NMSE τσ +==−       

 (D.14) 
 
It follows by substituting Equations D.13 and D.14 into Equations D.12 and D.11 that 

222

1
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A
A

A
AB KN
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 (D.15) 
and  
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We are now prepared to show that the MDES for the two-level model is equiva-
lent to the MDES for the three-level model. Recall that Part IV of the paper presented 
the expressions for the MDES for a three-level model (design A) and a two-level model 
(design B): 

For the three-level model: 

222
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For the two-level model reflecting the three-level data structure: 

22

22
2 1*

)1(
BB

B

BBJ
B

JNJPP
MMDES

στ
στ

+
+

−
=

−     

 (D.18) 

As shown below, given the same data structure (i.e., NB = NAK, and same num-
ber of schools, J, for both models), the MDES for Design A is equivalent to that for De-
sign B. 

Proof:  
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Three-Level Data Analyzed Using a Two-Level Model 
In this section we suppose that the data in an experiment are generated by a 

three-level model (e.g., students nested within classrooms, classrooms nested within 
schools) with randomization at level 3. However, only student and school level data are 
available to the analyst. The analyst therefore incorrectly uses a two-level hierarchical 
model to analyze three-level data. We show that the two-level results are consistent but 
inefficient.   

 

Model 
 
 We can write the “correct” model as 
 
 ,ikjkjj

T
ikjjikj eruTY +++++= δCθα      

 (D.19) 
 

where 
 
 ikjY is the outcome for student i within classroom k of school j; 
 jT = 1 if school j has been assigned to the experimental condition, 0 if control; 

 T
ikjC is a row vector of known pre-treatment covariates; 

 δ,,θα  are unknown regression parameters to be estimated; 

 ),0(~ 2
Aj Nu τ is a school-specific random effect; 

 ),0(~ 2
Akj Nr γ is a classroom-specific random effect; and 

 ),0(~ 2
Ajk Ne σ is a child-specific random effect. 

 
 

The random effects are mutually independent of each other and of the predictors 
in the model.  

 
 Writing equation (D.18) in vector notation, we have: 
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where )1( T

ikjj
T
ikj T CX =  and  )( TT δβ θα= . Next, we stack all the outcomes within a 

single school into a column vector of length nj, the number of students school j. We 
therefore have 
 
 ,jjjjjjj u erA1βXY +++=      
 (D.21) 
  
Where: 
 
  jY  is a vector of length nj having elements ikjY ; 

 jX  is a matrix having rows T
ikjX ; 

  j1  is a vector of length nj having elements equal to unity; 
  jr  is a column vector having elements kjr ; 

  jk

K

kj

j

1A
1=

⊕=  (the operator “ ⊕ ” stacks elements along the main diagonal of a 

matrix);  
   kj1  is a vector of length nkj having elements equal to unity, nkj  being the num-
ber of students in classroom kj; and 
 
  je  is a vector of length nj having elements ikje . 
 
Based on (D.21) we see that:  
 

 ,)()( 2

1

22
jj

T
kjkj

K

kA
T
jjAjjjjjj

j

uVarVar VI1111erA1Y ≡+⊕+=++=
=
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 (D.22) 
 
where jI  is the identity matrix having dimension j.  
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 It is well known that, under our assumptions and with Vj known, the generalized 
least squares estimator 
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is the unique minimum variance unbiased estimator and is efficient, having variance-
covariance matrix (Seber and Lee, 2003) 
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 The problem with GLS, of course, is that Vj , which depends on ),,( 222

AAA σγτ , is 
not known. Instead, the conventional practice in multilevel data analysis (Raudenbush 
and Bryk, 2002, Chapter 14) is to substitute maximum likelihood estimators (MLE) 

)ˆ,ˆ,ˆ( 222
AAA σγτ into (D.22), yielding jA

T
kjkj

K

kA
T
jjAj

j

I1111V 2

1

22 ˆˆˆˆ σγτ +⊕+=
=

and therefore generat-

ing the “feasible GLS” or “FGLS” estimator 
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As the number of schools increases, the MLE )ˆ,ˆ,ˆ( 222

AAA σγτ converge to their true values 
),,( 222

AAA σγτ so that jV̂ converges to jV and FGLSβ̂  converges to GLSβ̂ . Thus, FGLSβ̂ , while 
not generally unbiased or efficient in small samples, is consistent and asymptotically 
efficient (Seber and Lee, 2003). 
 
 Suppose now that we mis-specify the model by ignoring classroom variation. 
We believe, falsely, that the model is 
 
 *22** )(, jjB
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assuming  
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 ),0(~ 2*

Bj Nu τ is a school-specific random effect; 

 ),0(~ 2*
Bkj Ne σ is a child-specific random effect. 

 
The ostensible between-school variance, 2

Bτ , based on the mis-specified two-
level model, is not equivalent to the actual between-school variance 2

Aτ , and the ostens-
ible within-school variance 2

Bσ  is not equivalent to 2
Aσ  (see above for a simple exam-

ple). Nor is the ostensible variance of the outcome *
jV  in general equivalent to the ac-

tual variance, jV .  

 
 What happens to inferences about the regression coefficients when one adopts 
the mis-specified model? In this case, one will use the feasible GLS estimator  

 ∑∑ −

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
jj

T
j

j
jj

T
jFGLS YVXXVXβ 1*

1

1*
*

ˆˆˆ .    

 (D.27) 
As the number of schools increases, this estimator will converge in probability to its 
GLS counterpart 
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having mean 
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Thus, the mis-specified model produces a consistent estimator of the regression 
coefficients. Note that it can also be shown that estimating the model using OLS will 
yield an unbiased estimate of the regression coefficients.  

 
The asymptotic variance of the mis-specified estimator will be 
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 (D.30) 
 
and will therefore not generally be asymptotically efficient.  
 

Special Case with Balanced Data and No Covariates at Levels 1 or 2 
In the special case of balanced data and no covariates at levels 1 or 2, it can be 

shown that the estimators from the three-level model (D.25) and the mis-specified two-
level model (D.28) will be identical (and identical to OLS). Moreover, the variance-
covariance matrices (D.24 and D.30) will be identical. This implies that in these special 
cases the two-level model will yield results that are consistent and asymptotically effi-
cient. To see this, revise the level 3 model (D.3) to include a treatment contrast, yielding 

 
jjj uT 0000100000 ++= γγβ ,     ),0(~ 2

00 Aj Nu τ        (Level 3) 

 (D.31) 

where 2/1=jT  if school j is assigned to the experimental condition and 2/1−=jT  if 

school j is assigned to the control condition, with J/2 schools in each condition. Then it 

is easy to show that  
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 Now revise the mis-specified level 2 model (D.9) similarly: 
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We will then find that  
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Using the results regarding the MDES above, we can show that D.32 and D.34 are 

equal: 

Note that  
 
 By design, KNN AB =  

D.15 shows that  
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Hence, D.32 and D.34 are equal. 
 
 When the data are nearly balanced, the estimator based on the mis-specified 
model will still be consistent (Equation D.29), and we can anticipate that the estimators 
and their variance-covariance matrices will be approximately equal.  
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